Pretreatment of an Induced Mycelium-Bound Lipase from Aspergillus niger MYA 135 Improves Its Hydrolytic and Synthetic Activity


Whole-cell enzymes have been used as biocatalysts in a variety of reactions, such as free fatty acid production and the synthesis of fatty acid esters. In the present study, enzyme pretreatments with PEG, MES, Tween 80, Saponine, MgCl2·H2O, CaCl2 and different pH values were evaluated by using the Plackett–Burman statistical design to improve both the hydrolytic and synthetic activity of an induced mycelium-bound lipase from Aspergillus niger MYA 135. Interestingly, the preincubation at pH 4 had a significant effect on both the hydrolytic and transesterification activity, demonstrating the influence of the correct ionisation state on these activities. Meanwhile, the enzyme pretreatment with MgCl2 for in situ water activity control positively affected the esterification catalyst. Thus, compared with the control without pretreatment, the hydrolytic and the transesterification activities increased to 60.1 and 60.8 %, respectively, and with respect to the esterification reaction, the conversion was improved 2.33 times. Based on these results, by applying a simple pretreatment to the biocatalyst, the catalyst’s activity toward hydrolysis and synthesis was enhanced.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Scheme 1


  1. 1.

    Sharma R, Chisti Y, Banerjee UC (2001) Biotechnol Adv 19:627

    Article  CAS  Google Scholar 

  2. 2.

    Houde A, Kademi A, Leblanc D (2004) Appl Biochem Biotechnol 3:118

    Google Scholar 

  3. 3.

    Treichel H, de Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV (2010) Food Bioprocess Technol 3:182

    Article  CAS  Google Scholar 

  4. 4.

    Helwani Z, Othman MR, Aziz N, Fernando WJN, Kim J (2009) Fuel Process Technol 90:1502

    Article  CAS  Google Scholar 

  5. 5.

    Meng Y, Wang G, Yang N, Zhou Z, Li Y, Liang X, Chen J, Li Y, Li J (2011) Biotechnol Biofuels 4:1

    Article  Google Scholar 

  6. 6.

    de Azeredo LAI, Gomes PM, Sant’Anna GL, Castilho LR, Freire DMG (2007) Curr Microbiol 54:361

    Article  CAS  Google Scholar 

  7. 7.

    Guang J, Bierma TJ (2010) Illinois Sustainable Technology Center Institute of Natural Resource Sustainability University of Illinois at Urbana-Champaign,

  8. 8.

    Fukuda H, Hama S, Tamalampudi S, Noda H (2008) Trends Biotechnol 26:668

    Article  CAS  Google Scholar 

  9. 9.

    Romero CM, Pera LM, Olivaro C, Vazquez A, Baigorí MD (2012) Fuel Process Technol 98:23

    Article  CAS  Google Scholar 

  10. 10.

    Szczesna Antczak M, Kubiak A, Antczak T, Bielecki S (2009) Renew Energy 34:1185

    Article  CAS  Google Scholar 

  11. 11.

    Winkle UK, Stuckman M (1979) J Bacteriol 138:663

    Google Scholar 

  12. 12.

    Plackett RL, Burman JP (1944) Biometrica 33:305

    Article  Google Scholar 

  13. 13.

    Romero CM, Pera LM, Baigorí MD (2007) Appl Microbiol Biotechnol 76:861

    Article  CAS  Google Scholar 

  14. 14.

    Xu TW, Xu JH, Yu W, Zhong JH (2006) Biotechnol J 1:1293

    Article  CAS  Google Scholar 

  15. 15.

    Nguyen H-N, Wang T-C, Lin T-C, Guo J-H (2012) Afr J Biotechnol 11:6317

    CAS  Google Scholar 

  16. 16.

    Pera LM, Baigorí MD, Callieri D (1999) Curr Microbiol 39:65

    Article  CAS  Google Scholar 

  17. 17.

    Teng Y, Xu J, Wang D (2009) Bioprocess Biosyst Eng 32:397

    Article  CAS  Google Scholar 

  18. 18.

    Zaks A, Klibanov AM (1985) Proc Natl Acad Sci USA 82:3192

    Article  CAS  Google Scholar 

  19. 19.

    Klibanov AM (2001) Nature 409:241

    Article  CAS  Google Scholar 

  20. 20.

    Sun SY, Xu Y, Wang D (2009) Bioresour Technol 100:2607

    Article  CAS  Google Scholar 

  21. 21.

    Sun SY, Xu Y (2009) Bioresour Technol 100:1336

    Article  CAS  Google Scholar 

  22. 22.

    Sharon C, Nakazato M, Ogawa HI, Kato Y (1998) J Ind Microbiol Biotechnol 21:292

    Article  CAS  Google Scholar 

  23. 23.

    Sharma A, Bradman D, Patel R (2009) Indian J Biochem Biophys 46:178

    CAS  Google Scholar 

  24. 24.

    Adamczak M, Bornscheuer UT (2008) Process Biochem 44:257

    Article  Google Scholar 

  25. 25.

    Fontes N, Harper N, Halling PJ, Barreiros S (2003) Biotechnol Bioeng 82:802

    Article  CAS  Google Scholar 

  26. 26.

    Vaysse L, Ly A, Moulin G, Dubreucq E (2002) Enzym Microb Technol 31:648

    Article  CAS  Google Scholar 

  27. 27.

    Sasi P, Mehrotra RR, Debnath M (2006) Indian J Biotechnol 5:364

    CAS  Google Scholar 

  28. 28.

    Guncheva M, Zhiryakova D, Radchenkova N, Kambourova M (2007) J Mol Catal B Enzym 49:88

    Article  CAS  Google Scholar 

  29. 29.

    Glogauer A, Martini VP, Faoro H, Couto GH, Müller-Santos M, Monteiro RA, Mitchell DA, de Souza EM, Pedrosa FO, Krieger N (2011) Microb Cell Factories 10:54

    Article  CAS  Google Scholar 

  30. 30.

    Zaks A, Klibanov AM (1988) J Biol Chem 263:8017

    CAS  Google Scholar 

  31. 31.

    Alston M, Freedman R (2002) Biotechnol Bioeng 77:641

    Article  CAS  Google Scholar 

Download references


The present work was supported by PICT-2011-2158 (FONCyT), PIP 297 (CONICET) and CIUNT 26/D 409 (UNT).

Author information



Corresponding author

Correspondence to M. D. Baigorí.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Romero, C.M., Pera, L.M., Loto, F.V. et al. Pretreatment of an Induced Mycelium-Bound Lipase from Aspergillus niger MYA 135 Improves Its Hydrolytic and Synthetic Activity. Catal Lett 143, 469–475 (2013).

Download citation


  • Plackett–Burman
  • Mycelium-bound lipase
  • Hydrolysis
  • Synthesis
  • Aspergillus niger