Catalysis Letters

, Volume 143, Issue 2, pp 131–141 | Cite as

The Mechanism of Ethylene Epoxidation Catalysis

  • M. O. Özbek
  • R. A. van Santen


Today ethylene oxide can be produced industrially with ~90 % selectivity through the epoxidation of ethylene over silver catalyst. The past decades there has been a substantial increase in the understanding of the molecular chemistry that leads to high selectivity catalysis. Especially the discovery of an oxometallacycle intermediate that produces ethylene epoxide in competition with acetaldehyde can be considered a major advancement. The state of the surface at reaction conditions causes different reaction paths to compete. At high oxygen coverage also a direct epoxidation channel opens. We will also review recent progress on the understanding of promotion and coverage dependent reactivity. The contributions in our understanding of this reaction from computational catalysis will be emphasized.

Graphical Abstract


Epoxidation Mainly organic chemicals and reactions DFT Theory Catalysis Alkenes 


  1. 1.
    Ethylene Oxide (EO) (Complete Report), A Global Strategic Business Report Global Industry Analysts Inc, 2011, pp. 346Google Scholar
  2. 2.
    Christopher P, Linic S (2008) J Am Chem Soc 130:11264–11265CrossRefGoogle Scholar
  3. 3.
    Van Santen RA, Kuipers HPCE (1987) The mechanism of ethylene epoxidation. In: Pines H, Eley DD, Weisz PB (eds), Advances in Catalysis, Academic Press, New York, pp. 265–321Google Scholar
  4. 4.
    SHELL, Ethylene oxide/ethylene glycol (EO/EG) processes, SHELL, 2010Google Scholar
  5. 5.
    Zomerdijk JC, Hall MW (1981) Catal Rev 23:163–185CrossRefGoogle Scholar
  6. 6.
    Michaelides M-LBaA (2006) Exploring the catalytic activity of a noble metal: the Ag catalyzed ethylene epoxidation reaction, In: Rosei PGeWHF (ed) Physics of single molecules on crystal surfaces. Imperial College Press, London, pp. 389–424Google Scholar
  7. 7.
    Linic S, Barteau MA (2003) J Catal 214:200–212CrossRefGoogle Scholar
  8. 8.
    Lefort ET (1935) Process for the production of ethylene oxide, Catalyse. Generalisee FR. DE. SA, United StatesGoogle Scholar
  9. 9.
    Voge HH, Adams CR (1967) Catalytic oxidation of olefins. In: Pines H, Eley DD, Weisz PB (eds) Advances in catalysis. Academic Press, New York, pp. 151–221Google Scholar
  10. 10.
    Bulushev DA, Paukshtis EA, Nogin YN, Bal’zhinimaev BS (1995) Appl Catal. A 123:301–322Google Scholar
  11. 11.
    Goncharova SN, Paukshtis EA, Bal’zhinimaev BS (1995) Appl Catal. A 126:67–84Google Scholar
  12. 12.
    Tan SA, Grant RB, Lambert RM (1987) Appl Catal 31:159–177CrossRefGoogle Scholar
  13. 13.
    Kestenbaum H, Lange de Oliveira A, Schmidt W, Schüth F, Ehrfeld W, Gebauer K, Löwe H, Richter T, Lebiedz D, Untiedt I, Züchner H (2002) Ind Eng Chem Res 41:710–719CrossRefGoogle Scholar
  14. 14.
    Campbell CT (1984) J Vac Sci Technol. A 2:1024–1027Google Scholar
  15. 15.
    Kilty PA, Sachtler WMH (1974) Catal Rev Sci Eng 10:1–16CrossRefGoogle Scholar
  16. 16.
    Bryce-Smith D, BET, Griffe de Martinez B (1983) Chem Ind 18Google Scholar
  17. 17.
    Park DM, Ghazali S, Gau G (1983) Appl Catal 6:175–193CrossRefGoogle Scholar
  18. 18.
    Force EL, Bell AT (1975) J Catal 38:440–460CrossRefGoogle Scholar
  19. 19.
    Force EL, Bell AT (1975) J Catal 40:356–371CrossRefGoogle Scholar
  20. 20.
    Force EL, Bell AT (1976) J Catal 44:175–182CrossRefGoogle Scholar
  21. 21.
    Grant RB, Lambert RM (1985) J Catal 92:364–375CrossRefGoogle Scholar
  22. 22.
    Grant RB, Lambert RM (1983) J Chem Soc, Chem Commun (12):662–663Google Scholar
  23. 23.
    Grant RB, Lambert RM (1984) Surf Sci 146:256–268CrossRefGoogle Scholar
  24. 24.
    Campbell CT (1986) J Catal 99:28–38CrossRefGoogle Scholar
  25. 25.
    Campbell CT (1985) J Catal 94:436–444CrossRefGoogle Scholar
  26. 26.
    Campbell CT, Daube KA (1987) J Catal 106:301–306CrossRefGoogle Scholar
  27. 27.
    Campbell CT, Koel BE (1985) J Catal 92:272–283CrossRefGoogle Scholar
  28. 28.
    Rovida G, Pratesi F, Maglietta M, Ferroni E (1972) J Vac Sci Technol. A 9:796–799Google Scholar
  29. 29.
    Cant NW, Hall WK (1978) J Catal 52:81–94CrossRefGoogle Scholar
  30. 30.
    Barteau MA, Madix RJ (1980) Surf Sci 97:101–110CrossRefGoogle Scholar
  31. 31.
    Rovida G, Pratesi F, Ferroni E (1980) Appl Surf Sci 5:121–132CrossRefGoogle Scholar
  32. 32.
    Backx C, Moolhuysen J, Geenen P, van Santen RA (1981) J Catal 72:364–368CrossRefGoogle Scholar
  33. 33.
    Kitson M, Lambert RM (1981) Surf Sci 109:60–74CrossRefGoogle Scholar
  34. 34.
    Backx C, De Groot CPM, Biloen P (1981) Surf Sci 104:300–317CrossRefGoogle Scholar
  35. 35.
    Campbell CT, Paffett MT (1984) Surf Sci 143:517–535CrossRefGoogle Scholar
  36. 36.
    Akella LM, Lee HH (1984) J Catal 86:465–472CrossRefGoogle Scholar
  37. 37.
    Campbell CT, Paffett MT (1984) Appl Surf Sci 19:28–42CrossRefGoogle Scholar
  38. 38.
    Campbell CT, Paffett MT (1984) Surf Sci 139:396–416CrossRefGoogle Scholar
  39. 39.
    Campbell CT (1985) Surf Sci 157:43–60CrossRefGoogle Scholar
  40. 40.
    Grant RB, Lambert RM (1985) J Catal 93:92–99CrossRefGoogle Scholar
  41. 41.
    van Santen RA, de Groot CPM (1986) J Catal 98:530–539CrossRefGoogle Scholar
  42. 42.
    Tan SA, Grant RB, Lambert RM (1986) J Catal 100:383–391CrossRefGoogle Scholar
  43. 43.
    Grant RB, Harbach CAJ, Lambert RM, Tan SA (1987) J Chem Soc Faraday Trans 1(83):2035–2046Google Scholar
  44. 44.
    Tan SA, Grant RB, Lambert RM (1987) J Catal 106:54–64CrossRefGoogle Scholar
  45. 45.
    Carter EA, Goddard WA (1988) J Catal 112:80–92CrossRefGoogle Scholar
  46. 46.
    Dean M, Bowker M (1988) Appl Surf Sci 35:27–40CrossRefGoogle Scholar
  47. 47.
    Santen RAv (1988) The active site of promoted ethylene-epoxidation catalysts In: Phillips MJ, Ternan M, (eds) Catalysis: theory to practice, Proceedings of characterization and metal catalysts, Ottawa Canada, pp 1152–1158Google Scholar
  48. 48.
    Van den Hoek PJ, Baerends EJ, Van Santen RA (1989) J Phys Chem 93:6469–6475CrossRefGoogle Scholar
  49. 49.
    Carter EA, Goddard WA III (1989) Surf Sci 209:243–289CrossRefGoogle Scholar
  50. 50.
    Su DS, Jacob T, Hansen TW, Wang D, Schlögl R, Freitag B, Kujawa S (2008) Angew Chem 120:5083–5086CrossRefGoogle Scholar
  51. 51.
    Grant RB, Lambert RM (1985) Langmuir 1:29–33CrossRefGoogle Scholar
  52. 52.
    van Santen RA (1997) Handbook of heterogeneous catalysis. Wiley-VCH, WeinheimGoogle Scholar
  53. 53.
    Linic S, Barteau MA (2001) J Am Chem Soc 124:310–317CrossRefGoogle Scholar
  54. 54.
    Jones GS, Mavrikakis M, Barteau MA, Vohs JM (1998) J Am Chem Soc 120:3196–3204CrossRefGoogle Scholar
  55. 55.
    Wu G, Stacchiola D, Kaltchev M, Tysoe WT (2000) Surf Sci 463:81–92CrossRefGoogle Scholar
  56. 56.
    Linic S, Medlin JW, Barteau MA (2002) Langmuir 18:5197–5204CrossRefGoogle Scholar
  57. 57.
    Stacchiola D, Wu G, Kaltchev M, Tysoe WT (2001) Surf Sci 486:9–23CrossRefGoogle Scholar
  58. 58.
    Ozbek MO, Onal I, Santen RA (2012) Top Catal 55:710–717CrossRefGoogle Scholar
  59. 59.
    Lukaski A, Barteau M (2009) Catal Lett 128:9–17CrossRefGoogle Scholar
  60. 60.
    Torres D, Lopez N, Illas F, Lambert RM (2005) J Am Chem Soc 127:10774–10775CrossRefGoogle Scholar
  61. 61.
    Christopher P, Linic S (2010) ChemCatChem 2:78–83CrossRefGoogle Scholar
  62. 62.
    Kokalj A, Gava P, de Gironcoli S, Baroni S (2008) J Phys Chem C 112:1019–1027CrossRefGoogle Scholar
  63. 63.
    Linic S, Barteau MA (2003) J Am Chem Soc 125:4034–4035CrossRefGoogle Scholar
  64. 64.
    Linic S, Barteau MA (2008) Heterogeneous catalysis of alkene epoxidation. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VCH, WeinheimGoogle Scholar
  65. 65.
    Medlin JW, Barteau MA (2001) J Phys Chem B 105:10054–10061CrossRefGoogle Scholar
  66. 66.
    Torres D, Lopez N, Illas F (2006) J Catal 243:404–409CrossRefGoogle Scholar
  67. 67.
    Mavrikakis M, Doren DJ, Barteau MA (1998) J Phys Chem B 102:394–399CrossRefGoogle Scholar
  68. 68.
    Nakatsuji H, Hu Z-M, Nakai H, Ikeda K (1997) Surf Sci 387:328–341CrossRefGoogle Scholar
  69. 69.
    Chen H-T, Chang J-G, Ju S-P, Chen H-L (2010) J Phys Chem Lett 1:739–742CrossRefGoogle Scholar
  70. 70.
    Torres D, Illas F (2006) J Phys Chem B 110:13310–13313CrossRefGoogle Scholar
  71. 71.
    Özbek MO, Önal I, van Santen RA (2011) ChemCatChem 3:150–153CrossRefGoogle Scholar
  72. 72.
    Ozbek MO, Onal I, van Santen RA (2011) J Catal 284:230–235CrossRefGoogle Scholar
  73. 73.
    Ozbek MO, Onal I, Santen RAV (2011) J Phys Condens Matter 23:404202CrossRefGoogle Scholar
  74. 74.
    Ozbek MO, Onal I, Santen RAv (2012) ChemCatChem. doi: 10.1002/cctc.201200690
  75. 75.
    Bocquet ML, Michaelides A, Sautet P, King DA (2003) Phys Rev B 68:075413CrossRefGoogle Scholar
  76. 76.
    Bocquet M-L, Loffreda D (2005) J Am Chem Soc 127:17207–17215CrossRefGoogle Scholar
  77. 77.
    Schnadt J, Michaelides A, Knudsen J, Vang RT, Reuter K, Laegsgaard E, Scheffler M, Besenbacher F (2006) Phys Rev Lett 96:146101CrossRefGoogle Scholar
  78. 78.
    Mars P, van Krevelen DW (1954) Chem Eng Sci 3:41–59CrossRefGoogle Scholar
  79. 79.
    Larrabee AL, Kuczkowski RL (1978) J Catal 52:72–80CrossRefGoogle Scholar
  80. 80.
    Frondelius P, Häkkinen H, Honkala K (2010) Angew Chem Int Ed 49:7913–7916CrossRefGoogle Scholar
  81. 81.
    Klugherz PD, Harriott P (1971) AIChE J 17:856–866CrossRefGoogle Scholar
  82. 82.
    Richey WF (1972) J Phys Chem 76:213–216CrossRefGoogle Scholar
  83. 83.
    Cusumano JA (1976) Olefin oxidation process. In: U.S. Patent (ed) Exxon Research and Engineering Company, 1976Google Scholar
  84. 84.
    Atkins M, Couves J, Hague M, Sakakini BH, Waugh KC (2005) J Catal 235:103–113CrossRefGoogle Scholar
  85. 85.
    Bowker M, Waugh KC (1983) Surf Sci 134:639–664CrossRefGoogle Scholar
  86. 86.
    Nagy AJ, Mestl G, Herein D, Weinberg G, Kitzelmann E, Schlögl R (1999) J Catal 182:417–429CrossRefGoogle Scholar
  87. 87.
    Savinova ER, Zemlyanov D, Pettinger B, Scheybal A, Schlögl R, Doblhofer K (2000) Electrochim Acta 46:175–183CrossRefGoogle Scholar
  88. 88.
    Saravanan C, Salazar MR, Kress JD, Redondo A (2000) J Phys Chem B 104:8685–8691CrossRefGoogle Scholar
  89. 89.
    Li W-X, Stampfl C, Scheffler M (2003) Phys Rev B 67:045408CrossRefGoogle Scholar
  90. 90.
    Michaelides A, Reuter K, Scheffler M (2005) J Vac Sci Technol. A 23:1487–1497Google Scholar
  91. 91.
    Torres D, Illas F, Lambert RM (2008) J Catal 260:380–383CrossRefGoogle Scholar
  92. 92.
    Wang C-B, Deo G, Wachs IE (1999) J Phys Chem B 103:5645–5656CrossRefGoogle Scholar
  93. 93.
    Macleod N, Keel JM, Lambert RM (2003) Catal Lett 86:51–56CrossRefGoogle Scholar
  94. 94.
    Jung K-H, Chung K-H, Kim M-Y, Kim J-H, Seo G (1999) Korean J Chem Eng 16:396–400CrossRefGoogle Scholar
  95. 95.
    Mao C-F, Albert Vannice M (1995) Appl Catal. A 122:61–76Google Scholar
  96. 96.
    Campbell CT (1985) J Phys Chem 89:5789–5795CrossRefGoogle Scholar
  97. 97.
    Kapran A, Orlik S (2005) Theor Exp Chem 41:377–381CrossRefGoogle Scholar
  98. 98.
    Ayame A, Uchida Y, Ono H, Miyamoto M, Sato T, Hayasaka H (2003) Appl Catal. A 244:59–70Google Scholar
  99. 99.
    Amorim de Carvalho MCN, Passos FB, Schmal M (2007) J Catal 248:124–129Google Scholar
  100. 100.
    Bukhtiyarov VI, Prosvirin IP, Kvon RI, Bal’zhinimaev BS, Podgornov EA (1997) Appl Surf Sci 115:135–143CrossRefGoogle Scholar
  101. 101.
    Wang J, Ellis PD (1991) J Am Chem Soc 113:9675–9676CrossRefGoogle Scholar
  102. 102.
    Linic S, Barteau MA (2004) J Am Chem Soc 126:8086–8087CrossRefGoogle Scholar
  103. 103.
    Santen RAv (1988) Catalysis: theory to practice; Characterization and metal catalysts, Ottawa, Canada. Proceedings 3:7.Google Scholar
  104. 104.
    Bukhtiyarov VI, Hävecker M, Kaichev VV, Knop-Gericke A, Mayer RW, Schlögl R (2001) Catal Lett 74:121–125CrossRefGoogle Scholar
  105. 105.
    Bukhtiyarov VI, Hävecker M, Kaichev VV, Knop-Gericke A, Mayer RW, Schlögl R (2003) Phys Rev B 67:235422CrossRefGoogle Scholar
  106. 106.
    Kaichev VV, Bukhtiyarov VI, Hävecker M, Knop-Gercke A, Mayer RW, Schlögl R (2003) Kinet Catal 44:432–440CrossRefGoogle Scholar
  107. 107.
    Bukhtiyarov VI, Boronin AI, Savchenko VI (1990) Surf Sci 232:L205–L209CrossRefGoogle Scholar
  108. 108.
    Bal’zhinimaev BS, Sadovskaya EM, Suknev AP (2009) Chem Eng J (Lausanne) 154:2–8Google Scholar
  109. 109.
    Xu Y, Greeley J, Mavrikakis M (2005) J Am Chem Soc 127:12823–12827CrossRefGoogle Scholar
  110. 110.
    Li W-X, Stampfl C, Scheffler M (2002) Phys Rev B 65:075407CrossRefGoogle Scholar
  111. 111.
    Schmid M, Reicho A, Stierle A, Costina I, Klikovits J, Kostelnik P, Dubay O, Kresse G, Gustafson J, Lundgren E, Andersen JN, Dosch H, Varga P (2006) Phys Rev Lett 96:146102CrossRefGoogle Scholar
  112. 112.
    Gajdos M, Eichler A, Hafner J (2003) Surf Sci 531:272–286CrossRefGoogle Scholar
  113. 113.
    Buatier de Mongeot F, Cupolillo A, Rocca M, Valbusa U (1999) Chem Phys Lett 302:302–306Google Scholar
  114. 114.
    Goddard PJ, Lambert RM (1981) Surf Sci 107:519–532CrossRefGoogle Scholar
  115. 115.
    Michaelides A, Bocquet ML, Sautet P, Alavi A, King DA (2003) Chem Phys Lett 367:344–350CrossRefGoogle Scholar
  116. 116.
    Reuter K, Scheffler M (2001) Phys Rev B 65:035406CrossRefGoogle Scholar
  117. 117.
    Reuter K, Scheffler M (2004) Appl Phys A 78:793–798CrossRefGoogle Scholar
  118. 118.
    Bocquet M-L, Michaelides A, Loffreda D, Sautet P, Alavi A, King DA (2003) J Am Chem Soc 125:5620–5621CrossRefGoogle Scholar
  119. 119.
    Bocquet M-L, Sautet P, Cerda J, Carlisle CI, Webb MJ, King DA (2003) J Am Chem Soc 125:3119–3125CrossRefGoogle Scholar
  120. 120.
    Carlisle CI, King DA, Bocquet ML, Cerd J, Sautet P (2000) Phys Rev Lett 84:3899Google Scholar
  121. 121.
    Schnadt J, Knudsen J, Hu XL, Michaelides A, Vang RT, Reuter K, Li Z, Laegsgaard E, Scheffler M, Besenbacher F (2009) Phys Rev B 80:075424CrossRefGoogle Scholar
  122. 122.
    Gao W, Zhao M, Jiang Q (2007) J Phys Chem C 111:4042–4046CrossRefGoogle Scholar
  123. 123.
    Carlisle CI, Fujimoto T, Sim WS, King DA (2000) Surf Sci 470:15–31CrossRefGoogle Scholar
  124. 124.
    Bare SR, Griffiths K, Lennard WN, Tang HT (1995) Surf Sci 342:185–198CrossRefGoogle Scholar
  125. 125.
    Li W-X, Stampfl C, Scheffler M (2003) Phys Rev B 68:165412CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Chemical Engineering and Chemistry DepartmentEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations