Skip to main content

Advertisement

Log in

Catalytic Conversion of Renewable Sources for Biodiesel Production: A Comparison Between Biocatalysts and Inorganic Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This work compares the catalytic performance in biodiesel production of different kind of catalysts: acid, acid–base and biocatalysts. The inorganic catalysts tested have been: strong acid catalysts (USY, BEA, FAU-X), weak acid catalysts (MCM-41 and ITQ-6 with Si/Al = ∞), acid–base catalysts (K-MCM-41, K-ITQ-6), potassium silicate (K2SiO3) and hydroxide (KOH). The enzyme used as biocatalyst has been the Rhizomucor miehei Lipase. This enzyme has been immobilized in/on zeolite and related materials by different routes: adsorption, covalent binding, entrapment by sol–gel in mesoporous matrix or into liposome hybrid nanospheres. Among inorganic solid catalysts tested, the highest triglycerides conversion and biodiesel yield were achieved by K-ITQ-6 catalysts, after 48 h of reaction at 180 °C. Among heterogeneous biocatalysts, the type of lipase immobilization procedure strongly affects the final performance of the biocatalyst, especially toward its stability. The lipase encapsulated into the surfactant/mesoporous matrix or liposome nanospheres showed the best biodiesel productivity. The comparison among inorganic catalysts and biocatalysts tested reveals that the first type of catalysts requires much energy and alcohol consume in order to achieve the same substrate conversion, while the biodiesel yield strongly increases using biocatalyst, due to its high selectivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gilbert N (2012) Nature. doi:10.1038/nature.2012.11145

    Google Scholar 

  2. Snowdon R, Friedt W (2012) Nature 490:37. doi:10.1038/490037d

    Article  CAS  Google Scholar 

  3. Wijffels RH, Barbosa MJ (2010) Science 329:796

    Article  CAS  Google Scholar 

  4. Service RF (2011) Science 333:1238

    Article  CAS  Google Scholar 

  5. Ohlrogge J, Allen D, Berguson B, DellaPenna D, Shachar-Hill Y, Stymne S (2009) Science 324:1019

    Article  CAS  Google Scholar 

  6. Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Science 308:1446

    Article  CAS  Google Scholar 

  7. Ma F, Hanna MA (1999) Bioresour Technol 70:1

    Article  CAS  Google Scholar 

  8. Fukuda H, Kondo A, Noda H (2001) J Biosci Bioeng 92:405

    CAS  Google Scholar 

  9. Meher LC, VidyaSagar D, Naik SN (2006) Renew Sustain Energy Rev 10:248

    Article  CAS  Google Scholar 

  10. Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG (2005) Ind Eng Chem Res 44:5353

    Article  CAS  Google Scholar 

  11. Kiss AA, Dimian AC, Rothenberg G (2006) Adv Synth Catal 348:75

    Article  CAS  Google Scholar 

  12. Yadav GD, Nair JJ (1999) Micropor Mesopor Mater 33:1

    Article  CAS  Google Scholar 

  13. Shu Q, Yang B, Yuan H, Qing S, Zhu G (2007) Catal Commun 8:2159

    Article  CAS  Google Scholar 

  14. Park YM, Lee DW, Kim DK, Lee JS, Lee KY (2008) Catal Today 131:238

    Article  CAS  Google Scholar 

  15. Brito A, Borges ME, Arvelo R, Garcia F, Diaz MC, Otero N (2007) Int J Chem React Eng 5:A104

    Google Scholar 

  16. Xie W, Li H (2006) J Mol Catal A 255:1

    Article  CAS  Google Scholar 

  17. Xie W, Huang X, Li H (2007) Bioresour Technol 98:936

    Article  CAS  Google Scholar 

  18. Kim HJ, Kang BS, Kim MJ, Park YM, Kim DK, Lee JS, Lee KY (2004) Catal Today 93:315

    Article  Google Scholar 

  19. Di Serio M, Tesser R, Pengmei L, Santacesaria E (2008) Energy Fuels 22:207

    Article  Google Scholar 

  20. Suppes GJ, Dasari MA, Doskocil EJ, Mankidy PJ, Goff MJ (2004) Appl Catal A 257:213

    Article  CAS  Google Scholar 

  21. Liu X, He H, Wang Y, Zhu S, Piao X (2008) Fuel 87:216

    Article  CAS  Google Scholar 

  22. Leclercq E, Finiels A, Moreau C (2001) JACOS 78:1161

    Article  CAS  Google Scholar 

  23. Noiroj K, Intarapong P, Luengnaruemitchai A, Jai-In S (2009) Renew Energy 34:1145

    Article  CAS  Google Scholar 

  24. Lin VSY, Nieweg JA, Kern C, Trewyn BG, Wiench JW, Pruski M (2006) Prepr Symp Am Chem Soc. Div Fuel Chem 51:426

    CAS  Google Scholar 

  25. Lin VSY, Nieweg JA, Verkade JG, Venkat Reddy CR, Kern C, Patent WO/2008/013551

  26. Macario A, Giordano G, Onida B, Cocina D, Tagarelli A, Giuffrè AM (2010) App Catal A 378:160

    Article  CAS  Google Scholar 

  27. Lanzafame P, Temi M, Perathoner S, Centi G, Macario A, Aloise A, Giordano G (2011) Catal Today 175(1):435

    Article  CAS  Google Scholar 

  28. Linko YY, Lamsa M, Wu X, Seppolo J, Linko P (1998) J Biotechnol 66:41

    Article  CAS  Google Scholar 

  29. De BK, Bhattachuryya DK, Bandhu C (1999) J Am Oil Chem Soc 76:451

    Article  CAS  Google Scholar 

  30. Gonçalves APV, Lopes JM, Lemos F, Ribeiro FR, Prazeres DMF, Cabral JMS, Aires-Barros MR (1996) J Mol Catal B 1:53

    Article  Google Scholar 

  31. Soumanou MM, Bournsheuer UT (2003) Enz Microb Technol 33:97

    Article  CAS  Google Scholar 

  32. Hsu AF, Jones K, Foglia T, Marner WN (2000) Biotechnol Appl Biochem 36:181

    Article  Google Scholar 

  33. Walde P, Ichikawa S (2001) Biomol Eng 18:143

    Article  CAS  Google Scholar 

  34. Macario A, Giordano G, Frontera P, Crea F, Setti L (2008) Catal Lett 122:43

    Article  CAS  Google Scholar 

  35. Gandhi NN, Vijayalakshmi V, Sawant SB, Joshi JB (1996) Chem Eng J 61:149

    CAS  Google Scholar 

  36. Corma A, Fornés V, Jorda JL, Rey F, Fernandez-Lafuente R, Guisan JM, Mateo C (2001) Chem Commun. doi:10.1039/B009232K

    Google Scholar 

  37. Frings K, Koch M, Hartmeier W (1999) Enz Microb Technol 25:303

    Article  CAS  Google Scholar 

  38. Reetz MT (1997) Adv Mater 9:943

    Article  CAS  Google Scholar 

  39. Noureddini H, Gao X, Philkana RS (2005) Biores Technol 96:769

    Article  CAS  Google Scholar 

  40. Macario A, Katovic A, Giordano G, Forni L, Carloni F, Filippini A, Setti L (2005) Stud Sur Sci Catal 155:381

    Article  CAS  Google Scholar 

  41. Caballero V, Bautista FM, Campelo JM, Luna D, Marinas JM, Romero AA, Hidalgo JM, Luque R, Macario A, Giordano G (2009) Process Biochem 44:334

    Article  CAS  Google Scholar 

  42. Macario A, Moliner M, Corma A, Giordano G (2009) Micropor Mesopor Mater 118:334

    Article  CAS  Google Scholar 

  43. Macario A, Giordano G, Setti L, Parise A, Campelo JM, Marinas JM, Luna D (2007) Biocatal Biotrans 25:328

    Article  CAS  Google Scholar 

  44. Macario A, Verri F, Diaz U, Corma A, Giordano G (2012) Catal Today. doi:10.1016/j.cattod.2012.07.014

    Google Scholar 

  45. Breck DW (1974) Zeolite molecular sieves, structure, chemistry and use. Wiley, New York

    Google Scholar 

  46. Cao L (2005) Carrier-bound immobilized enzymes. Wiley–VCH, Weinheim

    Book  Google Scholar 

  47. Freedman B, Pryde EH, Mounts TL (1984) J Am Oil Chem Soc 61:1638

    Article  CAS  Google Scholar 

  48. Wahlen BD, Barney BM, Seefeldt LC (2008) Energy fuels 22:4223

    Article  CAS  Google Scholar 

  49. Kaieda M, Samukawa T, Matsumoto T, Ban K, Kondo A, Shimada Y, Noda H, Nomoto F, Ohtsuka K, Izumoto E, Fukuda H (1999) J Biosci Bioeng 88:627

    Article  CAS  Google Scholar 

  50. Chisti Y (2007) Biotechnol Adv 25:294

    Article  CAS  Google Scholar 

  51. Mata TM, Martins AA, Caetano NS (2010) Renew Sustain Energy Rev 14:217

    Article  CAS  Google Scholar 

  52. Fishman D, Majumdar R, Morello J, Pate R, Yang J, National Algal Biofuels Technology Roadmap, US Dept. of Energy, DOE/EE-0332, May 2010

  53. McGinn PJ, Dickinson KE, Bhatti S, Frigon J-C, Guiot SR, O’Leary SJB (2011) Photosynth Res 109:231

    Article  CAS  Google Scholar 

  54. Borowitza MA (1988) Fats, oils and hydrocarbons. In: Borowitza MA, Borowitza LJ (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, pp 257–287

    Google Scholar 

  55. Hu Q, Sommerfeld M, Jarvis E, Ghirarfi M, Posewitz M, Seibert M, Darzins A (2008) Plant J 54:621

    Article  CAS  Google Scholar 

  56. Keim GI (1945) US Patent 2,383,601

  57. Ertl G, Knozinger H, Schuth F, Weitkamp J (eds) (2008) Handbook of heterogeneous catalysis, 2nd edn. Wiley–VCH, Weinheim

    Google Scholar 

  58. Armor JN (1999) App Catal A 189:153

    Article  CAS  Google Scholar 

  59. Mbraka IK, Shanks BH (2006) J Am Oil Chem Soc 83:79

    Article  Google Scholar 

  60. Van Bekkum H, Flanigen EM, Jacobs PA, Jansen JC (eds) (2001) Introduction to zeolite science and practice. Elsevier, Amsterdam

    Google Scholar 

  61. Baerlocher CH, Meier WM, Olson DH (2001) Atlas of zeolites framework type, structure commission of the international zeolite association, 5th revised ed. Elsevier, Amsterdam

    Google Scholar 

  62. Frontera P, Testa F, Aiello R, Nagy JB (2005) Stud Surf Sci Catal 158 A:271

    Article  Google Scholar 

  63. Corma A, Diaz U, Domine ME, Fornés V (2000) J Am Chem Soc 122:2804

    Article  CAS  Google Scholar 

  64. Engelhardt G, Michel D (1987) High-resolution solid-state NMR of silicates and zeolites. Wiley, New York

    Google Scholar 

  65. Van Gerpen J (2005) Fuel Process Technol 86:1097

    Article  Google Scholar 

  66. Derewenda ZS, Derewenda U, Dodson GG (1992) J Mol Biol 227:818

    Article  CAS  Google Scholar 

  67. Siler-Marinkovic S, Tomasevic A (1998) Fuel 77(12):1389

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Macario.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 349 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macario, A., Giordano, G. Catalytic Conversion of Renewable Sources for Biodiesel Production: A Comparison Between Biocatalysts and Inorganic Catalysts. Catal Lett 143, 159–168 (2013). https://doi.org/10.1007/s10562-012-0949-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0949-3

Keywords

Navigation