Skip to main content
Log in

Effect of Thermal Ageing on the Nature of Iron Species in Fe-BEA

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The adsorption of NH3 and NO over fresh and thermally treated Fe-BEA catalysts were studied using in situ DRIFT spectroscopy to follow the evolution of different iron species before and after thermal treatment. Fe-BEA samples were prepared and thermally treated in air at 700 °C for 12, 24 and 48 h, and at 800 and 900 °C for 48 h. Compared to the fresh sample, the NH3 adsorption experiments indicate dealumination of the zeolite and iron oxide particle growth for the aged samples. Furthermore, the NO adsorption experiments show distinct absorption peaks which are assigned to isolated iron species, iron clusters and larger iron oxide particles. The thermally treated samples show migration of isolated iron species from the zeolite pores forming iron oxide particles. Further ageing results in a continuous migration and formation of larger iron oxide particles located on the external surface of the zeolite.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brandenberger S, Krocher O, Tissler A, Althoff R (2008) Catal Rev Sci Eng 50:492–531

    Article  CAS  Google Scholar 

  2. Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M (2008) J Catal 256:312–322

    Article  CAS  Google Scholar 

  3. Rahkamaa-Tolonen K, Maunula T, Lomma M, Huuhtanen M, Keiski RL (2005) Catal Today 100:217–222

    Article  CAS  Google Scholar 

  4. Grossale A, Nova I, Tronconi E (2008) Catal Today 136:18–27

    Article  CAS  Google Scholar 

  5. Kröcher O, Devadas M, Elsener M, Wokaun A, Söger N, Pfeifer M, Demel Y, Mussmann L (2006) Appl Catal B 66:208–216

    Article  Google Scholar 

  6. Grossale A, Nova I, Tronconi E (2009) Catal Lett 130:525–531

    Article  CAS  Google Scholar 

  7. Sjövall H, Olsson L, Fridell E, Blint RJ (2006) Appl Catal B 64:180–188

    Article  Google Scholar 

  8. Kieger S, Delahay G, Coq B, Neveu B (1999) J Catal 183:267–280

    Article  CAS  Google Scholar 

  9. Park JH, Park HJ, Baik JH, Nam IS, Shin CH, Lee JH, Cho BK, Oh SH (2006) J Catal 240:47–57

    Article  CAS  Google Scholar 

  10. Sullivan JA, Cunningham J, Morris MA, Keneavey K (1995) Appl Catal B-Environ 7:137–151

    Article  CAS  Google Scholar 

  11. Sjövall H, Fridell E, Blint R, Olsson L (2007) Top Catal 42–43:113–117

    Article  Google Scholar 

  12. Brandenberger S, Kröcher O, Tissler A, Althoff R (2010) Appl Catal B 95:348–357

    Article  CAS  Google Scholar 

  13. Chen H-Y, Sachtler WMH (1998) Catal Today 42:73–83

    Article  CAS  Google Scholar 

  14. Battiston AA, Bitter JH, Koningsberger DC (2003) J Catal 218:163–177

    Article  CAS  Google Scholar 

  15. Shwan S, Nedyalkova R, Jansson J, Korsgren J, Olsson L, Skoglundh M (2012) Ind Eng Chem Res 51:12762–12772

    Article  CAS  Google Scholar 

  16. Shwan S, Jansson J, Korsgren J, Olsson L, Skoglundh M (2012) Catal Today 197:24–37

    Article  CAS  Google Scholar 

  17. Marturano P, Drozdová L, Kogelbauer A, Prins R (2000) J Catal 192:236–247

    Article  CAS  Google Scholar 

  18. Battiston AA, Bitter JH, de Groot FMF, Overweg AR, Stephan O, van Bokhoven JA, Kooyman PJ, van der Spek C, Vankó G, Koningsberger DC (2003) J Catal 213:251–271

    Article  CAS  Google Scholar 

  19. Kiwi-Minsker L, Bulushev DA, Renken A (2003) J Catal 219:273–285

    Article  CAS  Google Scholar 

  20. Jia J, Pillai KS, Sachtler WMH (2004) J Catal 221:119–126

    Article  CAS  Google Scholar 

  21. Feng X, Hall WK (1996) Catal Lett 41:45–46

    Article  CAS  Google Scholar 

  22. Heinrich F, Schmidt C, Löffler E, Menzel M, Grünert W (2002) J Catal 212:157–172

    Article  CAS  Google Scholar 

  23. Zhu Q, van Teeffelen RM, van Santen RA, Hensen EJM (2004) J Catal 221:575–583

    Article  Google Scholar 

  24. Long RQ, Yang RT (1999) J Am Chem Soc 121:5595–5596

    Article  CAS  Google Scholar 

  25. Devadas M, Kröcher O, Elsener M, Wokaun A, Mitrikas G, Söger N, Pfeifer M, Demel Y, Mussmann L (2007) Catal Today 119:137–144

    Article  CAS  Google Scholar 

  26. Bartholomew CH (2001) Appl Catal A 212:17–60

    Article  CAS  Google Scholar 

  27. Brandenberger S, Kröcher O, Casapu M, Tissler A, Althoff R (2011) Appl Catal B 101:649–659

    Article  CAS  Google Scholar 

  28. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  29. Stevenson SA, Vartuli JC, Brooks CF (2000) J Catal 190:228–239

    Article  CAS  Google Scholar 

  30. Sun Q, Gao ZX, Wen B, Sachtler WMH (2002) Catal Lett 78:1–5

    Article  CAS  Google Scholar 

  31. Wallin M, Karlsson CJ, Skoglundh M, Palmqvist A (2003) J Catal 218:354–364

    Article  CAS  Google Scholar 

  32. Ramachandran B, Herman RG, Choi S, Stenger HG, Lyman CE, Sale JW (2000) Catal Today 55:281–290

    Article  CAS  Google Scholar 

  33. Klukowski D, Balle P, Geiger B, Wagloehner S, Kureti S, Kimmerle B, Baiker A, Grunwaldt JD (2009) Appl Catal B 93:185–193

    Article  CAS  Google Scholar 

  34. Liu Z, Millington PJ, Bailie JE, Rajaram RR, Anderson JA (2007) Microporous Mesoporous Mat 104:159–170

    Article  CAS  Google Scholar 

  35. Iwasaki M, Yamazaki K, Banno K, Shinjoh H (2008) J Catal 260:205–216

    Article  CAS  Google Scholar 

  36. Qi GS, Yang RT (2005) Appl Catal B 60:13–22

    Article  CAS  Google Scholar 

  37. Petit PE, Farges F, Wilke M, Sole VA (2001) J Synchrotron Radiat 8:952–954

    Article  CAS  Google Scholar 

  38. Krishna K, Makkee M (2006) Catal Today 114:23–30

    Article  CAS  Google Scholar 

  39. Mul G, Zandbergen MW, Kapteijn F, Moulijn JA, Perez-Ramirez J (2004) Catal Lett 93:113–120

    Article  CAS  Google Scholar 

  40. Mul G, Perez-Ramirez J, Kapteijn F, Moulijn JA (2002) Catal Lett 80:129–138

    Article  CAS  Google Scholar 

  41. Spoto G, Zecchina A, Berlier G, Bordiga S, Clerici MG, Basini L (2000) J Mol Catal A 158:107–114

    Article  CAS  Google Scholar 

  42. Segawa K, Chen Y, Kubsh JE, Delgass WN, Dumesic JA, Hall WK (1982) J Catal 76:112–132

    Article  CAS  Google Scholar 

  43. Grubert G, Hudson MJ, Joyner RW, Stockenhuber M (2000) J Catal 196:126–133

    Article  CAS  Google Scholar 

  44. Park SM, Seo G, Yoo YS, Han HS (2010) Korean J Chem Eng 27:1738–1743

    Article  CAS  Google Scholar 

  45. Santhosh Kumar M, Schwidder M, Grünert W, Bentrup U, Brückner A (2006) J Catal 239:173–186

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been performed within the FFI program (Proj. No. 32900-1), which is financially supported by the Swedish Energy Agency and partly within the Competence Centre for Catalysis, which is hosted by Chalmers University of Technology and financially supported by the Swedish Energy Agency and the member companies AB Volvo, Volvo Car Corporation AB, Scania CV AB, Haldor Topsøe A/S, and ECAPS AB. Financial support from Knut and Alice Wallenberg Foundation, Dnr KAW 2005.0055, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Skoglundh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shwan, S., Adams, E.C., Jansson, J. et al. Effect of Thermal Ageing on the Nature of Iron Species in Fe-BEA. Catal Lett 143, 43–48 (2013). https://doi.org/10.1007/s10562-012-0940-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0940-z

Keywords

Navigation