Skip to main content
Log in

Catalytic Roles of Metal Centers in the Selective Oxidation of Cyclohexanol by Cr(salten) Complexes Immobilized on MCM-41

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of transition metal complexes of 3-[N,N′-bis-3-(salicylidenamino)ethyltriamine] (salten) immobilized on MCM-41 were prepared for the solvent and additive-free selective oxidation of cyclohexanol with 30 % hydrogen peroxide (H2O2). The immobilized complexes were effective catalysts and exhibited much higher catalytic performance than their homogeneous analogues. Moreover, the metal centers were found to play important roles in the catalytic performance of immobilized complexes. When the immobilized chromium complex was used as catalyst, the optimal cyclohexanol conversion could reach 90.5 % with 100 % of the selectivity to cyclohexanone. In addition, the catalytic performance remained after being recycled five times.

Graphical Abstract

Owing to the different 3d electronic numbers of metal centers, eight kinds of immobilized Schiff base complexes exhibited significantly different catalytic performance in the selective oxidation of cyclohexanol with 30 % H2O2. The optimal cyclohexanol conversion could reach 90.5 % with 100 % of the selectivity to cyclohexanone over immobilized chromium complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Markó IE, Giles PR, Tsukazaki M, Brown SM, Urch CJ (1996) Science 274:2044

    Article  Google Scholar 

  2. Thorp HH (2000) Science 289:882

    Article  CAS  Google Scholar 

  3. Bakac A (1995) In: Karlin DK (ed) Mechanistic and kinetics aspects of transition metal oxygen chemistry in progress in inorganic chemistry, vol 43. Wiley, New York, p 297

    Google Scholar 

  4. Hong LS (2001) The Hong Kong Polytechnic University, Doctoral dissertation

  5. Balbinot L, Schuchardt U, Vera C, Sepúlveda J (2008) Catal Commun 9:1878

    Article  CAS  Google Scholar 

  6. Jana SK, Kubota Y, Tatsumi T (2008) J Catal 225:40

    Article  Google Scholar 

  7. Shul’pin GB, Matthes MG, Romakh VB, Barbosa MIF, Aoyagi JLT, Mandelli D (2008) Tetrahedron 64:2143

    Article  Google Scholar 

  8. Stamatis A, Doutsi P, Vartzouma Ch, Christoforidis KC, Deligiannakis Y, Louloudi M (2009) J Mol Catal A 297:44

    Article  CAS  Google Scholar 

  9. Arunachalam S, Padma Priya N, Jayabalakrishnan C, Chinnusamy V (2009) Spectrochim Acta A 74:591

    Article  CAS  Google Scholar 

  10. Andrews M, Laye RH, Pope’s JA (2009) Transit Met Chem 34:493

    Article  CAS  Google Scholar 

  11. Parida KM, Sahoo M, Singha S (2010) J Mol Catal A 329:7

    Article  CAS  Google Scholar 

  12. Ayala V, Corma A, Iglesias M, Sánchez F (2004) J Mol Catal A 221:201

    CAS  Google Scholar 

  13. Karandikar P, Dhanya KC, Deshpande S, Chandwadkar AJ, Sivasanker S, Agashe M (2004) Catal Commun 5:69

    Article  CAS  Google Scholar 

  14. Mac Leod TCO, Kirillova MV, Pombeiro AJL, Schiavon MA, Assis MD (2010) Appl Catal A 372:191

    Article  CAS  Google Scholar 

  15. Seyedi SM, Sandaroos R, Zohuri GH (2010) Chin Chem Lett 21:1303

    Article  CAS  Google Scholar 

  16. Ulaganatha Raja M, Ramesh R (2012) J Organomet Chem 699:5

    Article  Google Scholar 

  17. Ramakrishna D, Bhat BR (2011) Inorg Chem Commun 14:690

    Article  CAS  Google Scholar 

  18. Muthu Tamizh M, Mereiter K, Kirchner K, Karvembu R (2012) J Organomet Chem 700:194

    Article  CAS  Google Scholar 

  19. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  20. Wang XL, Wu GD, Li JP, Zhao N, Wei W, Sun YH (2007) Stud Surf Sci Catal 170:1374

    Article  Google Scholar 

  21. Wang XL, Wu GD, Li JP, Zhao N, Wei W, Sun YH (2007) J Mol Catal A 276:86

    Article  CAS  Google Scholar 

  22. Lim MH, Stein A (1999) Chem Mater 11:3285

    Article  CAS  Google Scholar 

  23. Sing KSW, Everett DH, Haul RAW, Moscow L, Pierotti RA, Rouquerol T, Siemienewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  24. Brunel D, Bellocq N, Sutra P, Cauvel A, Laspéras M, Moreau P, Renzo FD, Galarneau A, Fajula F (1998) Coord Chem Rev 180:1085

    Article  Google Scholar 

  25. Wu GD, Wang XL, Li JP, Zhao N, Wei W, Sun YH (2008) Catal Today 131:402

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports from the National Natural Science Foundation of China (21003073, 21203093), the Program to Cultivate Outstanding Young Key Teachers of Colleges and Universities of Jiangsu Province, the Collegiate Natural Science Fund of Jiangsu Province (12KJD150007) and the Innovation Technology Funding Project of Nanjing Institute of Technology (CKJ2010012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoli Wang or Gongde Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Wu, G., Xue, Y. et al. Catalytic Roles of Metal Centers in the Selective Oxidation of Cyclohexanol by Cr(salten) Complexes Immobilized on MCM-41. Catal Lett 143, 219–224 (2013). https://doi.org/10.1007/s10562-012-0934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0934-x

Keywords

Navigation