Skip to main content
Log in

Electronic Activity Relationship for Methacrolein Formation Over 4th Period Transition Metal Phosphomolybdates

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Phosphomolybdate compounds have been investigated for their structural characteristics and oxidation activity toward isobutane. The phosphomolybdates were synthesized from phosphomolybdic acid and the fourth period transition metal cations Cr3+, Mn2+, Fe3+, Fe2+, Co2+, Ni2+ Cu2+, Cu+ and Zn2+. Two compounds were synthesized per transition metal: where (i) all the protons had been replaced by the particular transition metal, and (ii) only partial proton replacement leaving a single proton per phosphomolybdate. X-ray diffraction analysis has shown that a primitive cubic phase is apparent with some of the transition metal phosphomolybdates. Each solid was exposed to isobutane using the anaerobic low-pressure steady-state technique. Category 1 exponential-like distributions of methacrolein were observed with all the transition metal phosphomolybdates, except the lower oxidation state iron and copper salts, Fe1.5[PMo12O40] and Cu3[PMo12O40] respectively. Activation energies ranged from 51.31 ± 0.27 kJ mol−1 (Cr[PMo12O40]) to over 200 kJ mol−1 (Zn1.5[PMo12O40]). Phosphomolybdates with counter cations which are one or two electrons deficient from either a 3d 5 or 3d 10 configuration (in this case 3d 3, 3d 8 or 3d 9) had the lowest activation barriers for methacrolein formation. A computational investigation into HOMO–LUMO band gap energies agrees with the association. The presence of protons also enhances Category 1 product formation and may be attributed to migration of H+ through the bulk of the solid.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Okuhara T, Mizuno N, Misono M (1996) Adv Catal 41:113–252

    Article  CAS  Google Scholar 

  2. Misono M (2001) Chem Commun 13:1141–1152

    Article  Google Scholar 

  3. Kendell S, Brown TC (2011) Catal Lett 141:1767–1785

    Article  Google Scholar 

  4. Kendell SM, Alston A-S, Ballam NJ, Brown TC, Burns RC (2011) Catal Lett 141:374–390

    Article  CAS  Google Scholar 

  5. Kendell SM, Brown TC, Burns RC (2008) Catal Today 131:526–532

    Article  CAS  Google Scholar 

  6. Kendell SM, Brown TC (2010) React Kinet Mech Catal 99:251–268

    CAS  Google Scholar 

  7. Misono M, Mizuno N, Mori H, Lee KY, Jiao J (1991) In: Grasselli RK, Sleight AW (eds) Structure-activity and selectivity relationships in heterogeneous catalysis. Elsevier, Amsterdam, pp 87–97

    Chapter  Google Scholar 

  8. Mizuno N, Watanabe T, Mori H, Misono M (1990) J Catal 123:157–163

    Article  CAS  Google Scholar 

  9. Okuhara T, Hashimoto T, Misono M, Yoneda Y (1983) Chem Lett 12:573–576

    Article  Google Scholar 

  10. Langpape M, Millet JMM, Ozkan US, Boudeulle M (1999) J Catal 181:80–90

    Article  CAS  Google Scholar 

  11. Black JB, Clayden NJ, Gai PL, Scott JD, Serwicka EM, Goodenough JB (1987) J Catal 106:1–15

    Article  CAS  Google Scholar 

  12. Mars P, van Krevelen DW (1954) Chem Eng Sci 3:41–59

    Article  CAS  Google Scholar 

  13. Chang TH (1995) Journal of the Chemical Society. Faraday Trans 91:375–379

    Article  CAS  Google Scholar 

  14. Fournier M, Feumi-Jantou C, Rabia C, Hervé G, Launay S (1992) J Mater Chem 2:971–978

    Article  CAS  Google Scholar 

  15. Misono M (1987) Catal Rev Sci Eng 29:269–321

    Article  CAS  Google Scholar 

  16. Rocchiccioli-Deltcheff C, Aouissi A, Bettahar MM, Launay S, Fournier M (1996) J Catal 164:16–27

    Article  CAS  Google Scholar 

  17. Moffat JB (2001) Metal-oxtygen clusters. Kluwer Academic, New York

    Google Scholar 

  18. West SF, Audrieth LF (1955) J Phys Chem 59:1069–1072

    Article  CAS  Google Scholar 

  19. Cavani F, Etienne E, Mezzogori R, Pigamo A, Trifiro F (2001) Catal Lett 75:99–105

    Article  CAS  Google Scholar 

  20. Cavani F, Mezzogori R, Pigamo A, Trifiro F, Etienne E (2001) Catal Today 71:97–110

    Article  CAS  Google Scholar 

  21. Wienold J, Timpe O, Ressler T (2003) Chem A Eur J 9:6007–6017

    Article  CAS  Google Scholar 

  22. Melsheimer J, Mahmoud SS, Mestl G, Schlögl R (1999) Catal Lett 60:103–111

    Article  CAS  Google Scholar 

  23. Nowinska K, Waclaw A, Sopa M, Klak M (2002) Catal Lett 78:347–352

    Article  CAS  Google Scholar 

  24. Greenwood NN, Earnshaw A (1984) Chemistry of the elements, 1st edn. Pergamon Press, Oxford

    Google Scholar 

  25. Barrows JN, Jameson GB, Pope MT (1985) J Am Chem Soc 107:1771–1773

    Article  CAS  Google Scholar 

  26. Kendell S, Alston A, Brown T (2009) Chem Prod Process Model 4:5

    Google Scholar 

  27. Komaya T, Misono M (1983) Chem Lett 12:1177–1180

    Article  Google Scholar 

  28. Okuhara T, Kasai A, Hayakawa N, Misono M, Yoneda Y (1981) Chemistry Letters 391–394

  29. Okuhara T, Kasai A, Hayakawa N, Yoneda Y, Misono M (1983) J Catal 83:121–130

    Article  CAS  Google Scholar 

  30. Mizuno N, Tateishi M, Iwamoto M (1996) J Catal 163:87–94

    Article  CAS  Google Scholar 

  31. Hu J, Burns RC (2000) J Catal 195:360–375

    Article  CAS  Google Scholar 

  32. Garner WE (1957) Adv Catal 9:169–186

    Article  CAS  Google Scholar 

  33. Hauffe K (1955) Adv Catal 7:213–257

    Article  CAS  Google Scholar 

  34. Beeck O (1950) Discuss Faraday Soc 8:118–128

    Article  Google Scholar 

  35. Haber J, Stone FS (1963) Trans Faraday Soc 59:192–206

    Article  CAS  Google Scholar 

  36. Hammer B (2006) Top Catal 37:3–15

    Article  CAS  Google Scholar 

  37. Hammer B, Norskov JK (1995) Nature 376:238–240

    Article  CAS  Google Scholar 

  38. Dowden DA, Reynolds PW (1950) Discuss Faraday Soc 8:184–190

    Article  Google Scholar 

  39. Marchal-Roch C, Millet JMM (2001) Comptes rendus de l’Academie des sciences. series II. fascicule C. 4:321–329

  40. Wang KP (1982) Chin J Phys 20:63–66

    CAS  Google Scholar 

  41. Dowden DA (1952) Ind Eng Chem 44:977–985

    Article  CAS  Google Scholar 

  42. Melrose MP, Scerri ER (1996) J Chem Educ 73:498–503

    Article  CAS  Google Scholar 

  43. van Bokhoven JA, Miller JT (2007) X-ray Absorption Fine Structure - XAFS13: 13th International Conference. 88:582–584

  44. Hiskia A, Mylonas A, Papaconstantinou E (2001) Chem Soc Rev 30:62–69

    Article  CAS  Google Scholar 

  45. Bardin BB, Davis RJ (1999) Appl Catal A 185:283–292

    Article  CAS  Google Scholar 

  46. Guo Y, Yang Y, Hu C, Guo C, Wang E, Zou Y, Feng S (2002) J Mater Chem 12:3046–3052

    Article  CAS  Google Scholar 

  47. Fournier M, Louis C, Che M, Chaquin P, Masure D (1989) J Catal 119:400–414

    Article  CAS  Google Scholar 

  48. Youn MH, Kim H, Jung JC, Song IK, Barteau KP, Barteau MA (2005) J Mol Catal A Chem 241:227–232

    Article  CAS  Google Scholar 

  49. Song IK, Kim HS, Chun MS (2003) Korean J Chem Eng 20:844–849

    Article  CAS  Google Scholar 

  50. Bentrup U, Bruckner A, Kant M, Kolf S, Dingerdissen U, Jansen S, Maschmeyer D, Siegert H, Zanthoff W (2006) Erdöl Erdgas Kohle 122:OG145–OG148

    Google Scholar 

  51. Ilkenhans T, Herzog B, Braun T, Schlogl R (1995) J Catal 153:275–292

    Article  CAS  Google Scholar 

  52. Nondek L, Mihajlova D, Andreev A, Palazov A, Kraus M, Shopov D (1975) J Catal 40:46–51

    Article  CAS  Google Scholar 

  53. Weber RS (1994) J Phys Chem 98:2999–3005

    Article  CAS  Google Scholar 

  54. Wang J, Hu C, Jian M, Zhang J, Li G (2006) J Catal 240:23–30

    Article  CAS  Google Scholar 

  55. Deusser LM, Petzoldt JC, Gaube JW, Hibst H (1998) Ind Eng Chem Res 37:3230–3236

    Article  CAS  Google Scholar 

  56. Langpape M, Millet JMM, Ozkan US, Delichère P (1999) J Catal 182:148–155

    Article  CAS  Google Scholar 

  57. Liu-Cai FX, Pham C, Bey F, Herve G (2002) React Kinet Catal Lett 75:305–314

    Article  CAS  Google Scholar 

  58. Dimitratos N, Vedrine J (2006) Catal Commun 7:811–818

    Article  CAS  Google Scholar 

  59. Nakamura O, Kodama T, Ogino I, Miyake Y (1979) Chem Lett 1:17

    Article  Google Scholar 

  60. Pandey K, Lakshmi N (1999) J Mater Sci 34:1749–1752

    Article  CAS  Google Scholar 

  61. Hardwick A, Dickens PG, Slade RCT (1984) Solid State Ion 13:345–350

    Article  CAS  Google Scholar 

  62. Nakamura O, Ogino I, Kodama T (1981) Solid State Ion 3–4:347–351

    Article  Google Scholar 

  63. Mioc UB, Petkovic M, Davidovic M, Peric M, Abdul-Redah T (2008) J Mol Struct 885:131–138

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane M. Kendell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kendell, S.M., Nguyen, N.H. & Brown, T.C. Electronic Activity Relationship for Methacrolein Formation Over 4th Period Transition Metal Phosphomolybdates. Catal Lett 143, 61–70 (2013). https://doi.org/10.1007/s10562-012-0917-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0917-y

Keywords

Navigation