Skip to main content

The Role of an Organic Cap in Nanoparticle Catalysis: Reversible Restructuring of Carbonaceous Material Controls Catalytic Activity of Platinum Nanoparticles for Ethylene Hydrogenation and Methanol Oxidation

Abstract

Inherent in the colloidal synthesis of nanoparticle catalysts is the presence of an organic capping agent that encapsulates the nanoparticles to prevent aggregation. However, this capping agent often remains present on the nanoparticles during catalytic reaction, and the effect of this coating on catalysis is an important question that will influence the future applications of colloidal nanoparticles. In this study, the structure of poly(vinylpyrrolidone) (PVP) ligands on Pt nanoparticles is probed using sum frequency generation vibrational spectroscopy before and after cap removal by UV light. When the PVP is removed, carbonaceous fragments remain on the surface that dynamically restructure in H2 and O2. These fragments form a porous coating around the Pt in H2 but collapse to a tightly closed shell in O2. Using ethylene hydrogenation and methanol oxidation as a probe for the catalytic activity of the nanoparticles in H2 and O2, respectively, it is shown that the structure of these carbonaceous fragments controls the catalytic activity of the nanoparticles across several orders of magnitude by opening in H2 and collapsing to block Pt sites in O2. Kinetic experiments on thermally-cleaned PVP-capped and oleic acid-capped nanoparticles show that these findings apply to multiple capping agents and cleaning methods. This work highlights the dominant role of an organic cap to mediate nanoparticle catalysis and provides one example where capped nanoparticles are dramatically better catalysts than their uncapped analogues.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ertl G, Knozinger H, Weitkamp J (eds) (1999) Preparation of solid catalysts. Wiley, Weinheim

    Google Scholar 

  2. Tsoncheva T, Dal Santo V, Gallo A, Scotti N, Dimitrov M, Kovacheva D (2011) Appl Catal A Gen 406:13

    Article  CAS  Google Scholar 

  3. Strongin DR, Carrazza J, Bare SR, Somorjai GA (1987) J Catal 103:213

    Article  CAS  Google Scholar 

  4. McCrea KR, Parker JS, Somorjai GA (2002) J Phys Chem B 106:10854

    Article  CAS  Google Scholar 

  5. Andersson MP, Abild-Pedersen E, Remediakis IN, Bligaard T, Jones G, Engbwk J, Lytken O, Horch S, Nielsen JH, Sehested J, Rostrup-Nielsen JR, Norskov JK, Chorkendorff I (2008) J Catal 255:6

    Article  CAS  Google Scholar 

  6. Kliewer CJ, Bieri M, Somorjai GA (2009) J Am Chem Soc 131:9958

    Article  CAS  Google Scholar 

  7. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1924) Science 1996:272

    Google Scholar 

  8. Peng X, Wickham J, Alivisatos AP (1998) J Am Chem Soc 120:5343

    Article  CAS  Google Scholar 

  9. Puntes VF, Krishnan KM, Alivisatos AP (2001) Science 291:2115

    Article  CAS  Google Scholar 

  10. Oh M, Mirkin CA (2005) Nature 438:651

    Article  CAS  Google Scholar 

  11. Yin Y, Alivisatos AP (2005) Nature 437:664

    Article  CAS  Google Scholar 

  12. Song H, Kim F, Connor S, Somorjai GA, Yang P (2004) J Phys Chem B 109:188

    Article  Google Scholar 

  13. Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2004) J Phys Chem B 109:2192

    Article  Google Scholar 

  14. Song H, Rioux RM, Hoefelmeyer JD, Komor R, Niesz K, Grass M, Yang P, Somorjai GA (2006) J Am Chem Soc 128:3027

    Article  CAS  Google Scholar 

  15. Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA (2007) Nano Lett 7:3097

    Article  CAS  Google Scholar 

  16. Kuhn JN, Huang W, Tsung C-K, Zhang Y, Somorjai GA (2008) J Am Chem Soc 130:14026

    Article  CAS  Google Scholar 

  17. Grass M, Rioux R, Somorjai G (2009) Catal Lett 128:1

    Article  CAS  Google Scholar 

  18. Grass ME, Joo SH, Zhang Y, Somorjai GA (2009) J Phys Chem C 113:8616

    Article  CAS  Google Scholar 

  19. Kliewer CJ, Aliaga C, Bieri M, Huang W, Tsung C-K, Wood JB, Komvopoulos K, Somorjai GA (2010) J Am Chem Soc 132:13088

    Article  CAS  Google Scholar 

  20. Witham CA, Huang W, Tsung C-K, Kuhn JN, Somorjai GA, Toste FD (2010) Nat Chem 2:36

    Article  CAS  Google Scholar 

  21. Alayoglu S, Aliaga C, Sprung C, Somorjai G (2011) Catal Lett 141:914

    Article  CAS  Google Scholar 

  22. Zhang Y, Grass ME, Kuhn JN, Tao F, Habas SE, Huang W, Yang P, Somorjai GA (2008) J Am Chem Soc 130:5868

    Article  CAS  Google Scholar 

  23. Kuhn JN, Tsung C-K, Huang W, Somorjai GA (2009) J Catal 265:209

    Article  CAS  Google Scholar 

  24. Albiter MA, Crooks RM, Zaera F (2009) J Phys Chem Lett 1:38

    Article  Google Scholar 

  25. Lu J, Fu B, Kung MC, Xiao G, Elam JW, Kung HH, Stair PC (2012) Science 335:1205

    Article  CAS  Google Scholar 

  26. Gorin DJ, Sherry BD, Toste FD (2008) Chem Rev 108:3351

    Article  CAS  Google Scholar 

  27. Li Y, Liu JH-C, Witham CA, Huang W, Marcus MA, Fakra SC, Alayoglu P, Zhu Z, Thompson CM, Arjun A, Lee K, Gross E, Toste FD, Somorjai GA (2011) J Am Chem Soc 133:13527

    Article  CAS  Google Scholar 

  28. Mitsudome T, Mikami Y, Matoba M, Mizugaki T, Jitsukawa K, Kaneda K (2012) Angew Chem Int Ed 51:136

    Article  CAS  Google Scholar 

  29. Bratlie KM, Komvopoulos K, Somorjai GA (2008) J Phys Chem C 112:11865

    Article  CAS  Google Scholar 

  30. Aliaga C, Park JY, Yamada Y, Lee HS, Tsung C-K, Yang P, Somorjai GA (2009) J Phys Chem C 113:6150

    Article  CAS  Google Scholar 

  31. Shen YR (2003) The principles of nonlinear optics. Wiley-Interscience, Hoboken

    Google Scholar 

  32. Krier JM, Michalak WD, Baker LR, An K, Komvopoulos K, Somorjai GA (2012) J Phys Chem C 116:17540

    Google Scholar 

  33. Borodko Y, Habas SE, Koebel M, Yang P, Frei H, Somorjai GA (2006) J Phys Chem B 110:23052

    Article  CAS  Google Scholar 

  34. Yang M, Chou KC, Somorjai GA (2003) J Phys Chem B 107:5267

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Helios Solar Energy Research Center and by the Chemical and Materials Sciences Divisions, which are supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Robert Baker or Gabor A. Somorjai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baker, L.R., Kennedy, G., Krier, J.M. et al. The Role of an Organic Cap in Nanoparticle Catalysis: Reversible Restructuring of Carbonaceous Material Controls Catalytic Activity of Platinum Nanoparticles for Ethylene Hydrogenation and Methanol Oxidation. Catal Lett 142, 1286–1294 (2012). https://doi.org/10.1007/s10562-012-0904-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0904-3

Keywords

  • Capping agent
  • Nanoparticles
  • Nanotechnology
  • SFG
  • Microscopy
  • Spectroscopy and general characterisation
  • Heterogeneous catalysis
  • Catalysis