Skip to main content
Log in

Vacancy-Driven Surface Segregation in Ni x Mg1−x O(100) Solid Solutions from First Principles Calculations

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Reduced Ni x Mg1−x O solid solutions are promising catalytic materials for the dry reforming of methane with carbon dioxide, a reaction of tremendous importance that converts two green-house gases into syn-gas. Conventional nickel-based catalysts have been found to encounter carbon deposition (i.e., coking), one of the major resources that cause the catalyst deactivation. Previous studies suggested that MgO-supported Ni nanoparticles produced from the reduction of Ni x Mg1−x O can inhibit the accumulation of carbon. The efficiency and durability of the catalyst strongly depends on the morphology. Here we employed density functional theory to investigate the structural changes of the Ni x Mg1−x O(100) solid solution under different conditions. Our results show that Ni ions preferentially anti-segregate to the subsurface layers of the MgO matrix during the NiO–MgO intermixing. Under reducing conditions, Ni ions facilitates the generation of oxygen vacancies, which prefer to couple together with Ni ions inside the MgO matrix to form a Ni ion–oxygen vacancy pair. In addition, the segregation of a Ni ion–oxygen vacancy pair can be controlled by changing the concentrations of Ni ions. This is driven by the strong interaction between oxygen vacancies and Ni ions. It is well known that oxygen vacancies play an important role during a catalytic reaction on an oxide, providing active sites to help the adsorption and dissociation of reaction intermediates. Our results show that in mixed oxides oxygen vacancies could also drive the segregation of the catalytically active components and provide new opportunities to tune the catalytic activity of oxides.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang L, Wang SZ, Blinn K, Liu MF, Liu Z, Cheng Z, Liu ML (2009) Science 326:126

    Article  CAS  Google Scholar 

  2. Yang F, Kundu S, Vidal AB, Ramírez PJ, Senanayake SD, Stacchiola D, Evans J, Liu P, Rodriguez JA (2011) Angew Chem Int Ed 50:10198

    Article  CAS  Google Scholar 

  3. Park B, Graciani J, Evans J, Stacchiola D, Ma S, Liu P, Nambu A, Fdez SJ, Hrbek J, Rodriguez JA (2009) Proc Natl Acad Sci USA 106:4975

    Article  CAS  Google Scholar 

  4. Yang F, Choi Y, Agnoli S, Liu P, Stacchiola D, Hrbek J, Rodriguez JA (2011) J Phys Chem C 115:23062

    Article  CAS  Google Scholar 

  5. Campbell CT, Peden CHF (2005) Science 309:713

    Article  CAS  Google Scholar 

  6. Navarro RM, Pena MA, Fierro JLG (2007) Chem Rev 107:3952

    Article  CAS  Google Scholar 

  7. Kroll VCH, Swaan HM, Mirodatos C (1996) J Catal 161:409

    Article  CAS  Google Scholar 

  8. Rostrupnielsen JR, Hansen JHB (1993) J Catal 144:38

    Article  CAS  Google Scholar 

  9. Kroll VCH, Swaan HM, Lacombe S, Mirodatos C (1996) J Catal 164:387

    Article  CAS  Google Scholar 

  10. Sarusi I, Fodor K, Baán K, Oszkó A, Pótári G, Erdohelyi A (2011) Catal Today 171:132

    Article  CAS  Google Scholar 

  11. Ruckenstein E, Hu YH (1995) Appl Catal A Gen 133:149

    Article  CAS  Google Scholar 

  12. Kumar P, Sun Y, Idem RO (2007) Energy Fuels 21:3113

    Article  CAS  Google Scholar 

  13. Cui Y, Zhang H, Xu H, Li W (2007) Appl Catal A Gen 331:60

    Article  CAS  Google Scholar 

  14. Bellido JDA, De Souza JE, M’Peko J-C, Assaf EM (2009) Appl Catal A Gen 358:215

    Article  CAS  Google Scholar 

  15. Di Valentin C, Giordano L, Pacchioni G, Rösch N (2003) Surf Sci 522:175

    Article  Google Scholar 

  16. Giordano L, Pacchioni G, Illas G, Rösch N (2002) Surf Sci 499:73

    Article  CAS  Google Scholar 

  17. Del Vitto A, Giordano L, Pacchioni G, Rösch N (2005) Surf Sci 575:103

    Article  Google Scholar 

  18. Ruckenstein E, Hu YH (1995) Appl Catal A Gen 133:149

    Article  CAS  Google Scholar 

  19. Ruckenstein E, Hu YH (1998) Catal Lett 51:183

    Article  CAS  Google Scholar 

  20. Ruckenstein E, Hu YH (1997) Appl Catal A Gen 154:185

    Article  CAS  Google Scholar 

  21. Ruckenstein E, Hu YH (1998) Catal Lett 51:183

    Article  CAS  Google Scholar 

  22. Hu YH, Ruckenstein E (1997) Catal Lett 43:71

    Article  CAS  Google Scholar 

  23. Martra G, Marchese L, Arena F, Parmaliana A, Coluccia S (1994) Topics Catal 1:63

    Article  CAS  Google Scholar 

  24. Hu YH, Ruckenstein E (1996) Catal Lett 36:145

    Article  CAS  Google Scholar 

  25. Pacchioni G (2003) Chem Phys Chem 4:1041

    Article  CAS  Google Scholar 

  26. Rodriguez JA, Hanson JC, Frenkel AI, Kim JY, Perez M (2002) J Am Chem Soc 124:346

    Article  CAS  Google Scholar 

  27. Ruban AV, Skriver HL, Nørskov JK (1999) Phys Rev B 59:15990

    Article  Google Scholar 

  28. Yudanov I, Pacchioni G, Neyman K, Rösch N (1997) J Phys Chem B 101:2786

    Article  CAS  Google Scholar 

  29. López N, Illas F (1998) J Phys Chem B 102:1430

    Article  Google Scholar 

  30. Valero R, Gomes JRB, Truhlar DG, Illas F (2010) J Chem Phys 132:104701

    Article  Google Scholar 

  31. Kresse G, Hafner JJ (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  32. Kresse G, Furthmuller JJ (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  33. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh D, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  34. Blöchl P (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  35. Monkhost H, Pack J (1993) Phys Rev B 47:558

    Article  Google Scholar 

  36. Cimino A, LoJacono M, Porta P, Valigi M (1967) Z Phys Chem 55:14

    Article  CAS  Google Scholar 

  37. Llofreda D (2003) Surf Sci 600:2103

    Article  Google Scholar 

  38. Wander A, Bush IJ, Harrison NM (2003) Phys Rev B 68:233405

    Article  Google Scholar 

  39. Di Valentin C, Finazzi E, Pacchioni G (2005) Surf Sci 591:70

    Article  Google Scholar 

  40. Giordano L, Di Valentin C, Pacchioni G, Goniakowski J (2005) Chem Phys 309:41

    Article  CAS  Google Scholar 

  41. Ferrari AM, Pisani C, Cinquini F, Giordano L, Pacchioni G (2007) J Chem Phys 127:174711

    Article  Google Scholar 

  42. Zhenpeng H, Horia M (2011) J Phys Chem C 115:17898

    Article  Google Scholar 

  43. Schwartz M, Gershaw R, Dwight K, Wold A (1987) Mat Res Bull 22:609

    Article  CAS  Google Scholar 

  44. Carrasco J, Lopez N, Illas F, Freund HJ (2006) J Chem Phys 125:074711

    Article  CAS  Google Scholar 

  45. Graciani J, Plata JJ, Sanz JF, Liu P, Rodriguez JA (2010) J Chem Phys 132:104703

    Article  Google Scholar 

  46. Parmaliana A, Arena F, Frusteri F, Giordano N (1990) J Chem Soc, Faraday Trans 86:2663

    Article  CAS  Google Scholar 

  47. Liu P, Logadóttir Á, Nørskov JK (2003) Electrochimina Acta 48:3731

    Article  CAS  Google Scholar 

  48. Shao M, Liu P, Adzic RR (2007) J Phys Chem B 111:6772

    Article  CAS  Google Scholar 

  49. Wei X, Pan W, Cheng L, Li B (2009) Solid State Ionics 180:13

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. M. S. Hybertsen for stimulating discussions and for carefully reading the manuscript. This work was carried out at Brookhaven National Laboratory (BNL) under Contract No. DE-AC02-98CH10886 with the US Department of Energy, Office of Science. The calculations utilized resources at the BNL Center for Functional Nanomaterials (CFN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, D., Liu, P. Vacancy-Driven Surface Segregation in Ni x Mg1−x O(100) Solid Solutions from First Principles Calculations. Catal Lett 142, 1211–1217 (2012). https://doi.org/10.1007/s10562-012-0894-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0894-1

Keywords

Navigation