Skip to main content
Log in

Opportunities for Tailoring Catalytic Properties Through Metal-Support Interactions

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The oxides used as supports for metal catalysts can be used to modify the catalyst properties. In this paper, we discuss three relatively new ways for optimizing the oxide–metal interactions and show examples where these methods have been used to improve catalytic performance. Opportunities still exist for using each of these approaches to produce materials with improved catalytic performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schwab G-M, Koller K (1968) J Am Chem Soc 90:3078

    Article  CAS  Google Scholar 

  2. Bunluesin T, Gorte RJ, Graham GW (1998) Appl Catal B 15:107

    Article  CAS  Google Scholar 

  3. Craciun R, Shereck B, Gorte RJ (1998) Catal Lett 51:149

    Article  CAS  Google Scholar 

  4. Sharma S, Hilaire S, Vohs JM, Gorte RJ, Jen H-W (2000) J Catal 190:199

    Article  CAS  Google Scholar 

  5. Smirnov MY, Graham GW (2001) Catal Lett 72:39

    Article  CAS  Google Scholar 

  6. Schwartz WR, Pfefferle LD (2012) J Phys Chem C 116:8571

    Article  CAS  Google Scholar 

  7. Schwartz WR, Ciuparu D, Pfefferle LD (2012) J Phys Chem C 116:8587

    Article  CAS  Google Scholar 

  8. Farrauto RJ, Hobson MC, Kennelly T, Waterman EM (1992) Appl Catal A81:227

    Google Scholar 

  9. Farrauto R, Lampert J, Hobson M, Waterman E (1995) Appl Catal B 6:263

    Article  CAS  Google Scholar 

  10. Sadeghi HR, Henrich VE (1984) J Catal 87:279

    Article  CAS  Google Scholar 

  11. Ko CS, Gorte RJ (1984) J Catal 90:59

    Article  CAS  Google Scholar 

  12. van Steen E, Claeys M, Dry ME, van de Loosdrecht J, Viljoen EL, Visagie JL (2005) J Phys Chem B 109:3575–3577

    Article  Google Scholar 

  13. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) J Am Chem Soc 128:3956–3964

    Article  CAS  Google Scholar 

  14. Bakhmutsky K, Wieder NL, Baldassare T, Smith MA, Gorte RJ (2011) Appl Catal A 397:266–271

    Article  CAS  Google Scholar 

  15. Uram KJ, Ng L, Yates JT (1986) Surf Sci 177:253

    Article  CAS  Google Scholar 

  16. Zhai YP, Pierre D, Si R, Deng WL, Ferrin P, Nilekar AU, Peng GW, Herron JA, Bell DC, Saltsburg H, Mavrikakis M, Flytzani-Stephanopoulos M (2010) Science 329:5999

    Article  Google Scholar 

  17. Shekhar M, Wang J, Lee WS, Williams WD, Kim SM, Stach EA, Miller JT, Delgass WN, Ribeiro FH (2012) J Am Chem Soc 134:4700–4708

    Article  CAS  Google Scholar 

  18. Green IX, Tang W, Neurock M, Yates JT (2011) Science 333:736–739

    Article  CAS  Google Scholar 

  19. Nishihata Y, Mizuki J, Akao T, Tanaka H, Uenishi M, Kimura M, Okamoto T, Hamada N (2002) Nature 418:164–167

    Article  CAS  Google Scholar 

  20. Li J, Singh UG, Bennett JW, Page K, Weaver JC, Zhang J-P, Proffen T, Rappe AM, Scott S, Seshadri R (2007) Chem Matls 19:1418

    Article  CAS  Google Scholar 

  21. Kobsiriphat W, Madsen BD, Wang Y, Marks LD, Barnett SA (2009) Solid State Ionics 180:257–264

    Article  CAS  Google Scholar 

  22. Bierschenk DM, Potter-Nelson E, Hoel C, Liao YG, Marks L, Poeppelmeier KR, Barnett SA (2011) J Power Sources 196:3089–3094

    Article  CAS  Google Scholar 

  23. Adijanto L, Balaji Padmanabhan V, Küngas R, Gorte RJ, Vohs JM (2012) J Mater Chem 22:11396–11402

    Article  CAS  Google Scholar 

  24. Wang Y, Madsen BD, Kobsiriphat W, Barnett SA, Marks LD (2007) Microsc Microanal 13:100

    Google Scholar 

  25. Caillot T, Gauthier G, Delichere P, Cayron C, Cadete FJ, Aires S (2012) J Catalysis 290:158

    Article  CAS  Google Scholar 

  26. Shah PR, Kim T, Zhou G, Fornasiero P, Gorte RJ (2006) Chem Mater 18:5363

    Article  CAS  Google Scholar 

  27. Shah PR, Khader MM, Vohs JM, Gorte RJ (2008) J Phys Chem C 112:2613

    Article  CAS  Google Scholar 

  28. Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Pérez M (2007) Science 318:1757–1760

    Article  CAS  Google Scholar 

  29. Williams KJ, Salmeron M, Bell AT, Somorjai GA (1988) Surf Sci 204:L745

    Article  CAS  Google Scholar 

  30. Rodriguez JA, Hrbek J (2010) Surf Sci 604:241

    Article  CAS  Google Scholar 

  31. Hornés A, Hungría AB, Bera P, Lopéz Cámara A, Fernández-García M, Martínez-Arias A, Barrio L, Estrella M, Zhou G, Fonseca JJ, Hanson JC, Rodriguez JA (2010) J Am Chem Soc 132:34–35

    Article  Google Scholar 

  32. Lu J, Fu B, Kung MC, Xiao G, Elam JW, Kung HH, Stair PC (2012) Science 335:1205–1208

    Article  CAS  Google Scholar 

  33. Greeley J, Norskov JK, Kibler LA, El-Aziz AM, Kolb DM (2006) Chem Eur J Chem Phys 7:1032–1035

    Article  CAS  Google Scholar 

  34. Yeung CMY, Yu KMK, Fu QJ, Thompsett D, Petch MI, Tsang SC (2005) J Am Chem Soc 127:18010–18011

    Article  CAS  Google Scholar 

  35. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935–938

    Article  CAS  Google Scholar 

  36. Guttel R, Paul M, Galeano C, Schuth F (2012) J Catalysis 289:100

    Article  Google Scholar 

  37. Bakhmutsky K, Wieder NL, Cargnello M, Galloway B, Fornasiero P, Gorte RJ (2012) Chem Sus Chem 5:140–148

    CAS  Google Scholar 

  38. Cargnello M, Wieder NL, Montini T, Gorte RJ, Fornasiero P (2010) J Am Chem Soc 132:1402–1409

    Article  CAS  Google Scholar 

  39. Cargnello M, Wieder NL, Canton P, Montini T, Giambastiani G, Benedetti A, Gorte RJ, Fornasiero P (2011) Chem Mater 23:3961–3969

    Article  CAS  Google Scholar 

  40. Kim JS, Wieder NL, Abraham AJ, Cargnello M, Fornasiero P, Gorte RJ, Vohs JM (2011) J Electrochem Soc 158:B596–B600

    Article  CAS  Google Scholar 

  41. M. Cargnello, J. J. Delgado Jaén, J. C. Hernández Garrido, K. Bakhmutsky, T. Montini, J. J. Calvino Gamez, R. J. Gorte, P Fornasiero (2012) Science. doi:10.1126/science.1222887

Download references

Acknowledgments

RJG acknowledge support for this work from the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, Grant DE-FG02-85ER13350. MC and PF acknowledge financial support from University of Trieste through FRA 2011 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Gorte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cargnello, M., Fornasiero, P. & Gorte, R.J. Opportunities for Tailoring Catalytic Properties Through Metal-Support Interactions. Catal Lett 142, 1043–1048 (2012). https://doi.org/10.1007/s10562-012-0883-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0883-4

Keywords

Navigation