Skip to main content
Log in

Effect of SiO2–Al2O3 Composition on the Catalytic Performance of the Re2O7/SiO2–Al2O3 Catalysts in the Metathesis of Ethylene and 2-Pentene for Propylene Production

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The production of propylene via a gas-phase metathesis of ethylene and 2-pentene has been studied over the Re2O7/SiO2xAl2O catalysts containing various SiO2–Al2O3 compositions (13, 25, 50, 75, and 100 wt% Al2O3). Using ethylene and 2-pentene as the reactants, isomerization of the initial 1-butene product into 2-butenes and a subsequent secondary metathesis reaction between 2-butenes and excess ethylene enhanced the propylene formation so that propylene yield higher than its stoichiometric amount (>50 %) could be obtained. While the pure Al2O3 supported Re2O7 catalyst possessed only the first type of isolated monomeric ReO4 tetrahedra structure with a stronger Re–O-support bond, the second type with a weaker Re–O-support bond was observed on the SiO2–Al2O3 supported ones. The double-bond isomerization and the metathesis activities were optimized to produce the highest propylene yield over the Re2O7/SiO2–Al2O3 catalyst containing 50 wt% Al2O3.

Graphical Abstract

While the pure Al2O3 supported Re2O7 catalyst possessed only the first type of isolated monomeric ReO4 tetrahedra structure with a stronger Re–O-support bond, the second type with a weaker Re–O-support bond was observed on the Re2O7/SiO2–Al2O3 catalysts and suggested to be the double-bond isomerization active sites. The isomerization of the initial 1-butene product into 2-butenes and a subsequent secondary metathesis reaction between these 2-butenes and excess ethylene resulted in the higher propylene yield. The optimum amount of alumina for the highest propylene yield was 50 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mol JC (2004) J Mol Catal A Chem 213:39

    Article  CAS  Google Scholar 

  2. Mol JC (1999) Catal Today 51:289

    Article  CAS  Google Scholar 

  3. Luckner RC, Wills GB (1973) J Catal 28:83

    Article  CAS  Google Scholar 

  4. Ivin KJ, Mol JC (1997) Olefin metathesis and metathesis polymerization. Academic Press, San Diego

    Google Scholar 

  5. Park YK, Lee CW, Kang NY, Choi WC, Choi S, Oh SH, Park DS (2010) Catal Surv Asia 14:75

    Article  CAS  Google Scholar 

  6. Cornil B, Herrmann AW, Schogl R, Wong C (2000) A concise encyclopedia catalysis from A to Z. Wiley, New York

    Google Scholar 

  7. Gartside RJ, Stanley SJ (2011) C5 metathesis for increased propylene, In: AIChE ethylene producers conference proceedings

  8. Phongsawat W, Netivorruksa B, Suriye K, Dokjampa S, Praserthdam P, Panpranot J (2012) J Nat Gas Chem 21:83

    Article  CAS  Google Scholar 

  9. Phongsawat W, Netivorruksa B, Suriye K, Dokjampa S, Praserthdam P, Panpranot J (2012) J Nat Gas Chem 21:158

    Article  CAS  Google Scholar 

  10. Cosyns J, Chodorge J, Commereuc D, Torck B (1998) Hydrocarbon Process 77:61

    CAS  Google Scholar 

  11. Sibeijn M, Mol JC (1990) Appl Catal 67:279

    Article  Google Scholar 

  12. Moulijn JA, Mol JC (1988) J Mol Catal 46:1

    Article  Google Scholar 

  13. Andreini A, Xiaoding X, Mol JC (1986) Appl Catal 27:31

    Article  CAS  Google Scholar 

  14. Sibeijn M, Spronk R, van Veen JAR, Mol JC (1991) Catal Lett 8:201

    Article  CAS  Google Scholar 

  15. Sheu FC, Hong CT, Hwang WL, Shih CJ, Wu JC, Yeh CT (1992) Catal Lett 14:297

    Article  CAS  Google Scholar 

  16. Balcar H, Hamtil R, Zilkova N, Cejka J (2004) Catal Lett 97:25

    Article  CAS  Google Scholar 

  17. Onaka M, Oikawa T (2002) Chem Lett 8: 850

  18. Oikawa T, Ookoshi T, Tanaka T, Yamamoto T, Onaka M (2004) Microporous Mesoporous Mater 74:93

    Article  CAS  Google Scholar 

  19. Balcar H, Cejka J (2002) Macromol Symp 293:43

    Article  Google Scholar 

  20. Martin-Aranda RM, Cejka J (2010) Top Catal 53:141

    Article  CAS  Google Scholar 

  21. Zukal A, Siklova H, Cejka J (2008) Langmuir 24:9837

    Article  CAS  Google Scholar 

  22. Gommes CJ, Friedrich H, Wolters M, De Jongh PE, De Jong KP (2009) Chem Mater 21:1311

    Article  CAS  Google Scholar 

  23. Schmidt F (2001) Appl Catal. A 221:15

    CAS  Google Scholar 

  24. Ellison A, Coverdale AK, Dearing PF (1983) Appl Catal 8:109

  25. Kapteijn F (1980) Catalytic metathesis of unsaturated esters by alumina supported rhenium oxide. PhD thesis, Amsterdam

  26. Xu X, Boelhouwer C, Vonk D, Benecke JI, Mol JC (1985) J Mol Catal 36:47

    Google Scholar 

  27. Xiaoding X, Boelhouwer C, Vonk D, Benecke JI, Mol JC (1986) J Mol Catal 36:47

    Article  Google Scholar 

  28. Mandelli D, Van Vliet MCA, Arnold U, Sheldon RA, Schuchardt U (2001) J Mol Catal A Chem 168:165

    Article  CAS  Google Scholar 

  29. Xiaoding X, Mol JC, Boelhouwer C (1986) J Chem Soc Faraday Trans 1F(82):2707

    Google Scholar 

  30. Bakala PC, Briot E, Millot Y, Piquemal JY, Bregeault JM (2008) J Catal 258:61

    Article  CAS  Google Scholar 

  31. Andreini A, Mol JC (1985) J Chem Soc Faraday Trans 1F(81):1705

    Google Scholar 

  32. Bregeault J-M, El Ali B, Martin J, Martin C, Derdar F, Bugli G, Delamar M (1988) J Mol Catal 46:37

    Article  Google Scholar 

  33. Debecker DP, Hauwaert D, Stoyanova M, Barkschat A, Rodemerck U, Gaigneaux EM (2010) Appl Catal. A 391:78

    Google Scholar 

  34. Aritani H, Fukuda O, Yamamoto T, Tanaka T, Imamura S (2000) Chem Lett 1:66

  35. Handzlik J, Ogonowski J, Stoch J, Mikolajczyk M, Michorczyk P (2006) Appl Catal. A 312:213

    CAS  Google Scholar 

  36. Handzlik J, Ogonowski J, Stoch J, Mikolajczyk M (2005) Catal Lett 101:65

    Article  CAS  Google Scholar 

  37. Mol JC (1994) Catal Lett 23:113

    Article  CAS  Google Scholar 

  38. Debecker DP, Bouchmella K, Poleunis C, Eloy P, Bertrand P, Gaigneaux EM, Mutin PH (2009) Chem Mater 21:2817

    Article  CAS  Google Scholar 

  39. Handzlik J, Sautet P (2008) J Catal 256:1

    Article  CAS  Google Scholar 

  40. Mol JC, Andreini A (1988) J Mol Catal 46:151

    Article  Google Scholar 

  41. Spronk R, Andreini A, Mol JC (1991) J Mol Catal 65:219

    Article  CAS  Google Scholar 

  42. Rodella CB, Cavalcante JAM, Buffon R (2004) Appl Catal A 274:213

    Article  CAS  Google Scholar 

  43. Rost AMJ, Schneider H, Zoller JP, Herrmann WA, Kuhn FE (2005) J Organomet Chem 690:4712

    Article  CAS  Google Scholar 

  44. Okada K, Tomita T, Kameshima Y, Yasumori A, MacKenzie KJD (1999) J Mater Chem 9:1307

    Article  CAS  Google Scholar 

  45. Amigues P, Chauvin Y, Commereuc D, Lai CC, Liu YH, Pan JM (1990) Hydrocarbon Process Int Ed 69:79

    Google Scholar 

  46. Kapteijn F, Homburg E, Mol JC (1983) J Chem Thermodyn 15:147

    Article  CAS  Google Scholar 

  47. Chauvin Y, Commereuc D (1992) J Chem Soc Chem Commun 462

  48. Handzlik J, Ogonowski J (1998) Politechnika Krakowska, seria Inzynieria i, eds. Technologia Chemiczna, Kraków

    Google Scholar 

  49. Wang Y, Chen Q, Yang W, Xie Z, Xu W, Huang D (2003) Appl Catal A 250:25

    Article  CAS  Google Scholar 

  50. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie

    Google Scholar 

  51. Balcar H, Zilkova N, Bastl Z, Dedecek J, Hamtil R, Brabec L, Zukal A, CŒejka J (2007) Stud Surf Sci Catal 170:1145

    Google Scholar 

  52. Yuan Y, Iwasawa Y (2002) J Phys Chem B 106:4441

    Article  CAS  Google Scholar 

  53. Stoyanova M, Rodemerck U, Bentrup U, Dingerdissen U, Linke D, Mayer RW, Lansink Rotgerink HGJ, Tacke T (2008) Appl Catal A 340:242

    Google Scholar 

  54. Okal J, Baran J (2001) J Catal 203:466

    Article  CAS  Google Scholar 

  55. Edreva-Kardjieva RM, Vuurman MA, Mol JC (1992) J Mol Catal 76:297

    Article  Google Scholar 

  56. Daniell W, Weingand T, Knozinger H (2003) J Mol Catal A Chem 204–205:519

    Article  Google Scholar 

  57. Lacheen HS, Cordeiro PJ, Iglesia E (2006) J Am Chem Soc 128:15082

    Article  CAS  Google Scholar 

  58. Vuurman MA, Stufkens DJ, Oskam A, Wachs IE (1992) J Mol Catal 76:263

    Article  CAS  Google Scholar 

  59. Olsthoorn AA, Boelhouwer C (1976) J Catal 44:207

    Article  CAS  Google Scholar 

  60. Bregeault J-M (1992) Catalyse homogene par les complexes des metaux de transition. Masson, Paris

    Google Scholar 

  61. Wang L, Hall WK (1983) J Catal 82:177

    Article  CAS  Google Scholar 

  62. Williams KPJ, Harrison K (1990) J Chem Soc Faraday Trans 86:1603

    Article  CAS  Google Scholar 

  63. Wachs IE (1996) Catal Today 27:437

    Article  CAS  Google Scholar 

  64. Okal J, Kepinski L, Krajczyk L, Drozd M (1999) J Catal 188:140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports from the Thailand Research Fund (TRF), the Office of Higher Education Commission (CHE), and the CU-NRU (AM1088A) are gratefully acknowledged. The authors would like to thank the Royal Golden Jubilee Ph.D. scholarship from TRF and SCG chemicals Co., Ltd for W.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joongjai Panpranot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phongsawat, W., Netiworaruksa, B., Suriye, K. et al. Effect of SiO2–Al2O3 Composition on the Catalytic Performance of the Re2O7/SiO2–Al2O3 Catalysts in the Metathesis of Ethylene and 2-Pentene for Propylene Production. Catal Lett 142, 1141–1149 (2012). https://doi.org/10.1007/s10562-012-0879-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0879-0

Keywords

Navigation