Abstract
Under the experimental conditions of the Orito reaction the individual hydrogenation and the competitive hydrogenations of three binary mixtures of methyl benzoylformate (MBF), pyruvic aldehyde dimethyl acetal (PA) and 2,2-diethoxyacetophenone (DAP) on platinum–alumina catalysts modified by cinchonidine, cinchonine, quinine and quinidine (Pt–CD, Pt–CN, Pt–QN, Pt–QD) were studied for the first time using continuous-flow fixed-bed reactor system. Conversions of chiral (Cc) and racemic (Cr) hydrogenations of all three compounds and enantioselectivities (ee) were determined under the same experimental conditions (under 4 MPa H2 pressure, at room temperature using toluene/AcOH 9/1 as solvent).The order of the rates of the enantioselective hydrogenations of the three substrates studied is MBF > PA > DAP, and the order of their ee values is MBF ~ PA > DAP. The hydrogenation rate and the effect of rate on ee depend on the structure of the cinchona used: hydrogenation of MBF and PA may produce ee values over 90 %, however, the ee values were conspicuously low in the presence of Pt–QN and especially of Pt–QD catalysts. In the chiral hydrogenation of DAP considering racemic hydrogenation rate decrease (Cc/Cr < 1) takes place instead of rate enhancement over all four catalysts. The new experimental data supported the so far known fundamental rules of the Orito reaction based on batch studies.
Graphical Abstract

This is a preview of subscription content, access via your institution.



References
- 1.
Izumi Y (1971) Angew Chem Int Ed 10:871
- 2.
Osawa T, Harada T, Takayasu O (2006) Curr Org Chem 10:1513
- 3.
Orito Y, Imai S, Niwa S (1979) J Chem Soc Jpn 1118
- 4.
Murzin DY, Maki-Arvela P, Toukoniitty E, Salmi T (2005) Catal Rev Sci Eng 47:175
- 5.
Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863
- 6.
Tálas E, Margitfalvi JL (2009) Chirality 22:3
- 7.
Bartók M (2010) Chem Rev 110:1663
- 8.
Künzle N, Hess R, Mallat T, Baiker A (1999) J Catal 186:239
- 9.
Li X, Li C (2001) Catal Lett 77:251
- 10.
Toukoniitty E, Murzin DYu (2004) Catal Lett 93:171
- 11.
Toukoniitty E, Wärnå J, Murzin DYu, Salmi T (2010) Chem Eng Sci 65:1076
- 12.
Meier DM, Mallat T, Ferri D, Baiker A (2006) J Catal 244:260
- 13.
Gao F, Chen L, Garland M (2006) J Catal 238:402
- 14.
Szőllősi Gy, Cserényi Sz, Fülöp F, Bartók M (2008) J Catal 260:245
- 15.
Szöllősi Gy, Cserényi Sz, Balázsik K, Fülöp F, Bartók M (2009) J Mol Catal A Chem 305:155
- 16.
Meier DM, Ferri D, Mallat T, Baiker A (2007) J Catal 248:68
- 17.
Szőllősi Gy, Cserényi Sz, Bucsi I, Bartók T, Fülöp F, Bartók M (2010) Appl Catal A Gen 382:263
- 18.
Baiker A (2005) Catal Today 100:159
- 19.
Blaser HU, Studer M (2007) Acc Chem Res 40:1348
- 20.
Kieboom AP, van Bekkum H (1972) J Catal 25:342
- 21.
Červený L, Ružička V (1981) Adv Catal 30:30
- 22.
Balázsik K, Szőri K, Szőllősi Gy, Bartók M (2011) Chem Commun 47:1551
- 23.
Szőllősi Gy, Makra Zs, Fülöp F, Bartók M (2011) Catal Lett 141:1616
- 24.
Balázsik K, Bucsi I, Cserényi Sz, Szőllősi Gy, Bartók M (2008) J Mol Catal A: Chem 285:84
- 25.
Bartók M, Sutyinszki M, Felföldi K (2003) J Catal 220:207
- 26.
Bartók M, Sutyinszki M, Balázsik K, Szőllősi Gy (2005) Catal Lett 100:161
- 27.
Studer M, Burkhardt S, Blaser HU (1999) Chem Commun 1727
- 28.
Balázsik K, Bartók M (2004) J Catal 224:463
- 29.
Felföldi K, Balázsik K, Bartók M (2003) J Mol Catal A: Chem 202:163
- 30.
Studer M, Blaser HU, Exner C (2003) Adv Synth Catal 345:45
- 31.
Ferri D, Bürgi T, Baiker A (2001) Chem Commun 13:1172
- 32.
Ferri D, Bürgi T (2001) J Am Chem Soc 123:12074
- 33.
Somorjai GA, van Hove MA (1989) Prog Surf Sci 30:201
- 34.
Török B, Felföldi K, Szakonyi G, Bartók M (1997) Ultrason Sonochem 4:301
- 35.
Török B, Balázsik K, Török M, Felföldi K, Bartók M (2002) Catal Lett 81:55
- 36.
Mallat T, Frauchinger S, Kooyman PJ, Schürch M, Baiker A (1999) Catal Lett 63:121
- 37.
Ma Z, Kubota J, Zaera F (2003) J Catal 219:404
- 38.
Zaera F (2008) J Phys Chem C 112:16196
- 39.
Hess R, Krumeich F, Mallat T, Baiker A (2004) Catal Lett 92:141
- 40.
Baddeley CJ, Jones TE, Trant AG, Wilson KE (2011) Top Catal 54:1348
- 41.
LeBlanc RJ, Chu W, Williams CT (2004) J Mol Catal A: Chem 212:277
- 42.
Bakos I, Szabó S, Bartók M, Kálmán E (2002) J Electroanal Chem 532:113
- 43.
Bartók M (2006) Curr Org Chem 10:1533
- 44.
Exner C, Pfaltz A, Studer M, Blaser HU (2003) Adv Synth Catal 345:1253
- 45.
Lavoie S, Laliberte MA, Temprano I, McBreen PH (2006) J Am Chem Soc 128:7588
- 46.
Martinek TA, Varga T, Fülöp F, Bartók M (2007) J Catal 246:266
- 47.
Martinek TA, Varga T, Balázsik K, Szöllősi Gy, Fülöp F, Bartók M (2008) J Catal 255:296
Acknowledgments
Financial support by the Hungarian National Science Foundation (OTKA Grant K 72065) is highly appreciated. The study was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (Gy. Szőllősi).
Author information
Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Szőllősi, G., Makra, Z., Fekete, M. et al. Heterogeneous Enantioselective Hydrogenation in a Continuous-flow Fixed-bed Reactor System: Hydrogenation of Activated Ketones and Their Binary Mixtures on Pt–Alumina–Cinchona Alkaloid Catalysts. Catal Lett 142, 889–894 (2012). https://doi.org/10.1007/s10562-012-0846-9
Received:
Accepted:
Published:
Issue Date:
Keywords
- Cinchona alkaloid
- Competitive hydrogenations
- Enantioselective
- Methyl benzoylformate
- Pyruvaldehyde dimethyl acetal
- 2,2-Diethoxyacetophenone
- Pt–alumina
- Continuous-flow reactor