Heterogeneous Enantioselective Hydrogenation in a Continuous-flow Fixed-bed Reactor System: Hydrogenation of Activated Ketones and Their Binary Mixtures on Pt–Alumina–Cinchona Alkaloid Catalysts

Abstract

Under the experimental conditions of the Orito reaction the individual hydrogenation and the competitive hydrogenations of three binary mixtures of methyl benzoylformate (MBF), pyruvic aldehyde dimethyl acetal (PA) and 2,2-diethoxyacetophenone (DAP) on platinum–alumina catalysts modified by cinchonidine, cinchonine, quinine and quinidine (Pt–CD, Pt–CN, Pt–QN, Pt–QD) were studied for the first time using continuous-flow fixed-bed reactor system. Conversions of chiral (Cc) and racemic (Cr) hydrogenations of all three compounds and enantioselectivities (ee) were determined under the same experimental conditions (under 4 MPa H2 pressure, at room temperature using toluene/AcOH 9/1 as solvent).The order of the rates of the enantioselective hydrogenations of the three substrates studied is MBF > PA > DAP, and the order of their ee values is MBF ~ PA > DAP. The hydrogenation rate and the effect of rate on ee depend on the structure of the cinchona used: hydrogenation of MBF and PA may produce ee values over 90 %, however, the ee values were conspicuously low in the presence of Pt–QN and especially of Pt–QD catalysts. In the chiral hydrogenation of DAP considering racemic hydrogenation rate decrease (Cc/Cr < 1) takes place instead of rate enhancement over all four catalysts. The new experimental data supported the so far known fundamental rules of the Orito reaction based on batch studies.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2

References

  1. 1.

    Izumi Y (1971) Angew Chem Int Ed 10:871

    Article  CAS  Google Scholar 

  2. 2.

    Osawa T, Harada T, Takayasu O (2006) Curr Org Chem 10:1513

    Article  CAS  Google Scholar 

  3. 3.

    Orito Y, Imai S, Niwa S (1979) J Chem Soc Jpn 1118

  4. 4.

    Murzin DY, Maki-Arvela P, Toukoniitty E, Salmi T (2005) Catal Rev Sci Eng 47:175

    Article  CAS  Google Scholar 

  5. 5.

    Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863

    Article  CAS  Google Scholar 

  6. 6.

    Tálas E, Margitfalvi JL (2009) Chirality 22:3

    Article  Google Scholar 

  7. 7.

    Bartók M (2010) Chem Rev 110:1663

    Article  Google Scholar 

  8. 8.

    Künzle N, Hess R, Mallat T, Baiker A (1999) J Catal 186:239

    Article  Google Scholar 

  9. 9.

    Li X, Li C (2001) Catal Lett 77:251

    Article  CAS  Google Scholar 

  10. 10.

    Toukoniitty E, Murzin DYu (2004) Catal Lett 93:171

    Article  CAS  Google Scholar 

  11. 11.

    Toukoniitty E, Wärnå J, Murzin DYu, Salmi T (2010) Chem Eng Sci 65:1076

    Article  CAS  Google Scholar 

  12. 12.

    Meier DM, Mallat T, Ferri D, Baiker A (2006) J Catal 244:260

    Article  CAS  Google Scholar 

  13. 13.

    Gao F, Chen L, Garland M (2006) J Catal 238:402

    Article  CAS  Google Scholar 

  14. 14.

    Szőllősi Gy, Cserényi Sz, Fülöp F, Bartók M (2008) J Catal 260:245

    Article  Google Scholar 

  15. 15.

    Szöllősi Gy, Cserényi Sz, Balázsik K, Fülöp F, Bartók M (2009) J Mol Catal A Chem 305:155

    Article  Google Scholar 

  16. 16.

    Meier DM, Ferri D, Mallat T, Baiker A (2007) J Catal 248:68

    Article  CAS  Google Scholar 

  17. 17.

    Szőllősi Gy, Cserényi Sz, Bucsi I, Bartók T, Fülöp F, Bartók M (2010) Appl Catal A Gen 382:263

    Article  Google Scholar 

  18. 18.

    Baiker A (2005) Catal Today 100:159

    Article  CAS  Google Scholar 

  19. 19.

    Blaser HU, Studer M (2007) Acc Chem Res 40:1348

    Article  CAS  Google Scholar 

  20. 20.

    Kieboom AP, van Bekkum H (1972) J Catal 25:342

    Article  CAS  Google Scholar 

  21. 21.

    Červený L, Ružička V (1981) Adv Catal 30:30

    Google Scholar 

  22. 22.

    Balázsik K, Szőri K, Szőllősi Gy, Bartók M (2011) Chem Commun 47:1551

    Article  Google Scholar 

  23. 23.

    Szőllősi Gy, Makra Zs, Fülöp F, Bartók M (2011) Catal Lett 141:1616

    Article  Google Scholar 

  24. 24.

    Balázsik K, Bucsi I, Cserényi Sz, Szőllősi Gy, Bartók M (2008) J Mol Catal A: Chem 285:84

    Article  Google Scholar 

  25. 25.

    Bartók M, Sutyinszki M, Felföldi K (2003) J Catal 220:207

    Article  Google Scholar 

  26. 26.

    Bartók M, Sutyinszki M, Balázsik K, Szőllősi Gy (2005) Catal Lett 100:161

    Article  Google Scholar 

  27. 27.

    Studer M, Burkhardt S, Blaser HU (1999) Chem Commun 1727

  28. 28.

    Balázsik K, Bartók M (2004) J Catal 224:463

    Article  Google Scholar 

  29. 29.

    Felföldi K, Balázsik K, Bartók M (2003) J Mol Catal A: Chem 202:163

    Article  Google Scholar 

  30. 30.

    Studer M, Blaser HU, Exner C (2003) Adv Synth Catal 345:45

    Article  CAS  Google Scholar 

  31. 31.

    Ferri D, Bürgi T, Baiker A (2001) Chem Commun 13:1172

    Article  Google Scholar 

  32. 32.

    Ferri D, Bürgi T (2001) J Am Chem Soc 123:12074

    Article  CAS  Google Scholar 

  33. 33.

    Somorjai GA, van Hove MA (1989) Prog Surf Sci 30:201

    Article  CAS  Google Scholar 

  34. 34.

    Török B, Felföldi K, Szakonyi G, Bartók M (1997) Ultrason Sonochem 4:301

    Article  Google Scholar 

  35. 35.

    Török B, Balázsik K, Török M, Felföldi K, Bartók M (2002) Catal Lett 81:55

    Article  Google Scholar 

  36. 36.

    Mallat T, Frauchinger S, Kooyman PJ, Schürch M, Baiker A (1999) Catal Lett 63:121

    Article  CAS  Google Scholar 

  37. 37.

    Ma Z, Kubota J, Zaera F (2003) J Catal 219:404

    Article  CAS  Google Scholar 

  38. 38.

    Zaera F (2008) J Phys Chem C 112:16196

    Article  CAS  Google Scholar 

  39. 39.

    Hess R, Krumeich F, Mallat T, Baiker A (2004) Catal Lett 92:141

    Article  CAS  Google Scholar 

  40. 40.

    Baddeley CJ, Jones TE, Trant AG, Wilson KE (2011) Top Catal 54:1348

    Article  CAS  Google Scholar 

  41. 41.

    LeBlanc RJ, Chu W, Williams CT (2004) J Mol Catal A: Chem 212:277

    Article  CAS  Google Scholar 

  42. 42.

    Bakos I, Szabó S, Bartók M, Kálmán E (2002) J Electroanal Chem 532:113

    Article  CAS  Google Scholar 

  43. 43.

    Bartók M (2006) Curr Org Chem 10:1533

    Article  Google Scholar 

  44. 44.

    Exner C, Pfaltz A, Studer M, Blaser HU (2003) Adv Synth Catal 345:1253

    Article  CAS  Google Scholar 

  45. 45.

    Lavoie S, Laliberte MA, Temprano I, McBreen PH (2006) J Am Chem Soc 128:7588

    Article  CAS  Google Scholar 

  46. 46.

    Martinek TA, Varga T, Fülöp F, Bartók M (2007) J Catal 246:266

    Article  CAS  Google Scholar 

  47. 47.

    Martinek TA, Varga T, Balázsik K, Szöllősi Gy, Fülöp F, Bartók M (2008) J Catal 255:296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Hungarian National Science Foundation (OTKA Grant K 72065) is highly appreciated. The study was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (Gy. Szőllősi).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to György Szőllősi or Mihály Bartók.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Szőllősi, G., Makra, Z., Fekete, M. et al. Heterogeneous Enantioselective Hydrogenation in a Continuous-flow Fixed-bed Reactor System: Hydrogenation of Activated Ketones and Their Binary Mixtures on Pt–Alumina–Cinchona Alkaloid Catalysts. Catal Lett 142, 889–894 (2012). https://doi.org/10.1007/s10562-012-0846-9

Download citation

Keywords

  • Cinchona alkaloid
  • Competitive hydrogenations
  • Enantioselective
  • Methyl benzoylformate
  • Pyruvaldehyde dimethyl acetal
  • 2,2-Diethoxyacetophenone
  • Pt–alumina
  • Continuous-flow reactor