Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Heterogeneous Enantioselective Hydrogenation in a Continuous-flow Fixed-bed Reactor System: Hydrogenation of Activated Ketones and Their Binary Mixtures on Pt–Alumina–Cinchona Alkaloid Catalysts

  • 354 Accesses

  • 14 Citations

Abstract

Under the experimental conditions of the Orito reaction the individual hydrogenation and the competitive hydrogenations of three binary mixtures of methyl benzoylformate (MBF), pyruvic aldehyde dimethyl acetal (PA) and 2,2-diethoxyacetophenone (DAP) on platinum–alumina catalysts modified by cinchonidine, cinchonine, quinine and quinidine (Pt–CD, Pt–CN, Pt–QN, Pt–QD) were studied for the first time using continuous-flow fixed-bed reactor system. Conversions of chiral (Cc) and racemic (Cr) hydrogenations of all three compounds and enantioselectivities (ee) were determined under the same experimental conditions (under 4 MPa H2 pressure, at room temperature using toluene/AcOH 9/1 as solvent).The order of the rates of the enantioselective hydrogenations of the three substrates studied is MBF > PA > DAP, and the order of their ee values is MBF ~ PA > DAP. The hydrogenation rate and the effect of rate on ee depend on the structure of the cinchona used: hydrogenation of MBF and PA may produce ee values over 90 %, however, the ee values were conspicuously low in the presence of Pt–QN and especially of Pt–QD catalysts. In the chiral hydrogenation of DAP considering racemic hydrogenation rate decrease (Cc/Cr < 1) takes place instead of rate enhancement over all four catalysts. The new experimental data supported the so far known fundamental rules of the Orito reaction based on batch studies.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2

References

  1. 1.

    Izumi Y (1971) Angew Chem Int Ed 10:871

  2. 2.

    Osawa T, Harada T, Takayasu O (2006) Curr Org Chem 10:1513

  3. 3.

    Orito Y, Imai S, Niwa S (1979) J Chem Soc Jpn 1118

  4. 4.

    Murzin DY, Maki-Arvela P, Toukoniitty E, Salmi T (2005) Catal Rev Sci Eng 47:175

  5. 5.

    Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863

  6. 6.

    Tálas E, Margitfalvi JL (2009) Chirality 22:3

  7. 7.

    Bartók M (2010) Chem Rev 110:1663

  8. 8.

    Künzle N, Hess R, Mallat T, Baiker A (1999) J Catal 186:239

  9. 9.

    Li X, Li C (2001) Catal Lett 77:251

  10. 10.

    Toukoniitty E, Murzin DYu (2004) Catal Lett 93:171

  11. 11.

    Toukoniitty E, Wärnå J, Murzin DYu, Salmi T (2010) Chem Eng Sci 65:1076

  12. 12.

    Meier DM, Mallat T, Ferri D, Baiker A (2006) J Catal 244:260

  13. 13.

    Gao F, Chen L, Garland M (2006) J Catal 238:402

  14. 14.

    Szőllősi Gy, Cserényi Sz, Fülöp F, Bartók M (2008) J Catal 260:245

  15. 15.

    Szöllősi Gy, Cserényi Sz, Balázsik K, Fülöp F, Bartók M (2009) J Mol Catal A Chem 305:155

  16. 16.

    Meier DM, Ferri D, Mallat T, Baiker A (2007) J Catal 248:68

  17. 17.

    Szőllősi Gy, Cserényi Sz, Bucsi I, Bartók T, Fülöp F, Bartók M (2010) Appl Catal A Gen 382:263

  18. 18.

    Baiker A (2005) Catal Today 100:159

  19. 19.

    Blaser HU, Studer M (2007) Acc Chem Res 40:1348

  20. 20.

    Kieboom AP, van Bekkum H (1972) J Catal 25:342

  21. 21.

    Červený L, Ružička V (1981) Adv Catal 30:30

  22. 22.

    Balázsik K, Szőri K, Szőllősi Gy, Bartók M (2011) Chem Commun 47:1551

  23. 23.

    Szőllősi Gy, Makra Zs, Fülöp F, Bartók M (2011) Catal Lett 141:1616

  24. 24.

    Balázsik K, Bucsi I, Cserényi Sz, Szőllősi Gy, Bartók M (2008) J Mol Catal A: Chem 285:84

  25. 25.

    Bartók M, Sutyinszki M, Felföldi K (2003) J Catal 220:207

  26. 26.

    Bartók M, Sutyinszki M, Balázsik K, Szőllősi Gy (2005) Catal Lett 100:161

  27. 27.

    Studer M, Burkhardt S, Blaser HU (1999) Chem Commun 1727

  28. 28.

    Balázsik K, Bartók M (2004) J Catal 224:463

  29. 29.

    Felföldi K, Balázsik K, Bartók M (2003) J Mol Catal A: Chem 202:163

  30. 30.

    Studer M, Blaser HU, Exner C (2003) Adv Synth Catal 345:45

  31. 31.

    Ferri D, Bürgi T, Baiker A (2001) Chem Commun 13:1172

  32. 32.

    Ferri D, Bürgi T (2001) J Am Chem Soc 123:12074

  33. 33.

    Somorjai GA, van Hove MA (1989) Prog Surf Sci 30:201

  34. 34.

    Török B, Felföldi K, Szakonyi G, Bartók M (1997) Ultrason Sonochem 4:301

  35. 35.

    Török B, Balázsik K, Török M, Felföldi K, Bartók M (2002) Catal Lett 81:55

  36. 36.

    Mallat T, Frauchinger S, Kooyman PJ, Schürch M, Baiker A (1999) Catal Lett 63:121

  37. 37.

    Ma Z, Kubota J, Zaera F (2003) J Catal 219:404

  38. 38.

    Zaera F (2008) J Phys Chem C 112:16196

  39. 39.

    Hess R, Krumeich F, Mallat T, Baiker A (2004) Catal Lett 92:141

  40. 40.

    Baddeley CJ, Jones TE, Trant AG, Wilson KE (2011) Top Catal 54:1348

  41. 41.

    LeBlanc RJ, Chu W, Williams CT (2004) J Mol Catal A: Chem 212:277

  42. 42.

    Bakos I, Szabó S, Bartók M, Kálmán E (2002) J Electroanal Chem 532:113

  43. 43.

    Bartók M (2006) Curr Org Chem 10:1533

  44. 44.

    Exner C, Pfaltz A, Studer M, Blaser HU (2003) Adv Synth Catal 345:1253

  45. 45.

    Lavoie S, Laliberte MA, Temprano I, McBreen PH (2006) J Am Chem Soc 128:7588

  46. 46.

    Martinek TA, Varga T, Fülöp F, Bartók M (2007) J Catal 246:266

  47. 47.

    Martinek TA, Varga T, Balázsik K, Szöllősi Gy, Fülöp F, Bartók M (2008) J Catal 255:296

Download references

Acknowledgments

Financial support by the Hungarian National Science Foundation (OTKA Grant K 72065) is highly appreciated. The study was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (Gy. Szőllősi).

Author information

Correspondence to György Szőllősi or Mihály Bartók.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Szőllősi, G., Makra, Z., Fekete, M. et al. Heterogeneous Enantioselective Hydrogenation in a Continuous-flow Fixed-bed Reactor System: Hydrogenation of Activated Ketones and Their Binary Mixtures on Pt–Alumina–Cinchona Alkaloid Catalysts. Catal Lett 142, 889–894 (2012). https://doi.org/10.1007/s10562-012-0846-9

Download citation

Keywords

  • Cinchona alkaloid
  • Competitive hydrogenations
  • Enantioselective
  • Methyl benzoylformate
  • Pyruvaldehyde dimethyl acetal
  • 2,2-Diethoxyacetophenone
  • Pt–alumina
  • Continuous-flow reactor