Catalysis Letters

, Volume 142, Issue 7, pp 889–894 | Cite as

Heterogeneous Enantioselective Hydrogenation in a Continuous-flow Fixed-bed Reactor System: Hydrogenation of Activated Ketones and Their Binary Mixtures on Pt–Alumina–Cinchona Alkaloid Catalysts

  • György Szőllősi
  • Zsolt Makra
  • Mónika Fekete
  • Ferenc Fülöp
  • Mihály Bartók


Under the experimental conditions of the Orito reaction the individual hydrogenation and the competitive hydrogenations of three binary mixtures of methyl benzoylformate (MBF), pyruvic aldehyde dimethyl acetal (PA) and 2,2-diethoxyacetophenone (DAP) on platinum–alumina catalysts modified by cinchonidine, cinchonine, quinine and quinidine (Pt–CD, Pt–CN, Pt–QN, Pt–QD) were studied for the first time using continuous-flow fixed-bed reactor system. Conversions of chiral (Cc) and racemic (Cr) hydrogenations of all three compounds and enantioselectivities (ee) were determined under the same experimental conditions (under 4 MPa H2 pressure, at room temperature using toluene/AcOH 9/1 as solvent).The order of the rates of the enantioselective hydrogenations of the three substrates studied is MBF > PA > DAP, and the order of their ee values is MBF ~ PA > DAP. The hydrogenation rate and the effect of rate on ee depend on the structure of the cinchona used: hydrogenation of MBF and PA may produce ee values over 90 %, however, the ee values were conspicuously low in the presence of Pt–QN and especially of Pt–QD catalysts. In the chiral hydrogenation of DAP considering racemic hydrogenation rate decrease (Cc/Cr < 1) takes place instead of rate enhancement over all four catalysts. The new experimental data supported the so far known fundamental rules of the Orito reaction based on batch studies.

Graphical Abstract


Cinchona alkaloid Competitive hydrogenations Enantioselective Methyl benzoylformate Pyruvaldehyde dimethyl acetal 2,2-Diethoxyacetophenone Pt–alumina Continuous-flow reactor 



Financial support by the Hungarian National Science Foundation (OTKA Grant K 72065) is highly appreciated. The study was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (Gy. Szőllősi).


  1. 1.
    Izumi Y (1971) Angew Chem Int Ed 10:871CrossRefGoogle Scholar
  2. 2.
    Osawa T, Harada T, Takayasu O (2006) Curr Org Chem 10:1513CrossRefGoogle Scholar
  3. 3.
    Orito Y, Imai S, Niwa S (1979) J Chem Soc Jpn 1118Google Scholar
  4. 4.
    Murzin DY, Maki-Arvela P, Toukoniitty E, Salmi T (2005) Catal Rev Sci Eng 47:175CrossRefGoogle Scholar
  5. 5.
    Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863CrossRefGoogle Scholar
  6. 6.
    Tálas E, Margitfalvi JL (2009) Chirality 22:3CrossRefGoogle Scholar
  7. 7.
    Bartók M (2010) Chem Rev 110:1663CrossRefGoogle Scholar
  8. 8.
    Künzle N, Hess R, Mallat T, Baiker A (1999) J Catal 186:239CrossRefGoogle Scholar
  9. 9.
    Li X, Li C (2001) Catal Lett 77:251CrossRefGoogle Scholar
  10. 10.
    Toukoniitty E, Murzin DYu (2004) Catal Lett 93:171CrossRefGoogle Scholar
  11. 11.
    Toukoniitty E, Wärnå J, Murzin DYu, Salmi T (2010) Chem Eng Sci 65:1076CrossRefGoogle Scholar
  12. 12.
    Meier DM, Mallat T, Ferri D, Baiker A (2006) J Catal 244:260CrossRefGoogle Scholar
  13. 13.
    Gao F, Chen L, Garland M (2006) J Catal 238:402CrossRefGoogle Scholar
  14. 14.
    Szőllősi Gy, Cserényi Sz, Fülöp F, Bartók M (2008) J Catal 260:245CrossRefGoogle Scholar
  15. 15.
    Szöllősi Gy, Cserényi Sz, Balázsik K, Fülöp F, Bartók M (2009) J Mol Catal A Chem 305:155CrossRefGoogle Scholar
  16. 16.
    Meier DM, Ferri D, Mallat T, Baiker A (2007) J Catal 248:68CrossRefGoogle Scholar
  17. 17.
    Szőllősi Gy, Cserényi Sz, Bucsi I, Bartók T, Fülöp F, Bartók M (2010) Appl Catal A Gen 382:263CrossRefGoogle Scholar
  18. 18.
    Baiker A (2005) Catal Today 100:159CrossRefGoogle Scholar
  19. 19.
    Blaser HU, Studer M (2007) Acc Chem Res 40:1348CrossRefGoogle Scholar
  20. 20.
    Kieboom AP, van Bekkum H (1972) J Catal 25:342CrossRefGoogle Scholar
  21. 21.
    Červený L, Ružička V (1981) Adv Catal 30:30Google Scholar
  22. 22.
    Balázsik K, Szőri K, Szőllősi Gy, Bartók M (2011) Chem Commun 47:1551CrossRefGoogle Scholar
  23. 23.
    Szőllősi Gy, Makra Zs, Fülöp F, Bartók M (2011) Catal Lett 141:1616CrossRefGoogle Scholar
  24. 24.
    Balázsik K, Bucsi I, Cserényi Sz, Szőllősi Gy, Bartók M (2008) J Mol Catal A: Chem 285:84CrossRefGoogle Scholar
  25. 25.
    Bartók M, Sutyinszki M, Felföldi K (2003) J Catal 220:207CrossRefGoogle Scholar
  26. 26.
    Bartók M, Sutyinszki M, Balázsik K, Szőllősi Gy (2005) Catal Lett 100:161CrossRefGoogle Scholar
  27. 27.
    Studer M, Burkhardt S, Blaser HU (1999) Chem Commun 1727Google Scholar
  28. 28.
    Balázsik K, Bartók M (2004) J Catal 224:463CrossRefGoogle Scholar
  29. 29.
    Felföldi K, Balázsik K, Bartók M (2003) J Mol Catal A: Chem 202:163CrossRefGoogle Scholar
  30. 30.
    Studer M, Blaser HU, Exner C (2003) Adv Synth Catal 345:45CrossRefGoogle Scholar
  31. 31.
    Ferri D, Bürgi T, Baiker A (2001) Chem Commun 13:1172CrossRefGoogle Scholar
  32. 32.
    Ferri D, Bürgi T (2001) J Am Chem Soc 123:12074CrossRefGoogle Scholar
  33. 33.
    Somorjai GA, van Hove MA (1989) Prog Surf Sci 30:201CrossRefGoogle Scholar
  34. 34.
    Török B, Felföldi K, Szakonyi G, Bartók M (1997) Ultrason Sonochem 4:301CrossRefGoogle Scholar
  35. 35.
    Török B, Balázsik K, Török M, Felföldi K, Bartók M (2002) Catal Lett 81:55CrossRefGoogle Scholar
  36. 36.
    Mallat T, Frauchinger S, Kooyman PJ, Schürch M, Baiker A (1999) Catal Lett 63:121CrossRefGoogle Scholar
  37. 37.
    Ma Z, Kubota J, Zaera F (2003) J Catal 219:404CrossRefGoogle Scholar
  38. 38.
    Zaera F (2008) J Phys Chem C 112:16196CrossRefGoogle Scholar
  39. 39.
    Hess R, Krumeich F, Mallat T, Baiker A (2004) Catal Lett 92:141CrossRefGoogle Scholar
  40. 40.
    Baddeley CJ, Jones TE, Trant AG, Wilson KE (2011) Top Catal 54:1348CrossRefGoogle Scholar
  41. 41.
    LeBlanc RJ, Chu W, Williams CT (2004) J Mol Catal A: Chem 212:277CrossRefGoogle Scholar
  42. 42.
    Bakos I, Szabó S, Bartók M, Kálmán E (2002) J Electroanal Chem 532:113CrossRefGoogle Scholar
  43. 43.
    Bartók M (2006) Curr Org Chem 10:1533CrossRefGoogle Scholar
  44. 44.
    Exner C, Pfaltz A, Studer M, Blaser HU (2003) Adv Synth Catal 345:1253CrossRefGoogle Scholar
  45. 45.
    Lavoie S, Laliberte MA, Temprano I, McBreen PH (2006) J Am Chem Soc 128:7588CrossRefGoogle Scholar
  46. 46.
    Martinek TA, Varga T, Fülöp F, Bartók M (2007) J Catal 246:266CrossRefGoogle Scholar
  47. 47.
    Martinek TA, Varga T, Balázsik K, Szöllősi Gy, Fülöp F, Bartók M (2008) J Catal 255:296CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Stereochemistry Research GroupThe Hungarian Academy of SciencesSzegedHungary
  2. 2.Department of Organic ChemistryUniversity of SzegedSzegedHungary
  3. 3.Institute of Pharmaceutical ChemistryUniversity of SzegedSzegedHungary

Personalised recommendations