Skip to main content

Advertisement

Log in

AC3B Technology for Direct Liquefaction of Lignocellulosic Biomass: New Concepts of Coupling and Decoupling of Catalytic/Chemical Reactions for Obtaining a Very High Overall Performance

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The acid-catalyzed conversion of lignocellulosic biomass (AC3B) process has been developed for the direct liquefaction of lignocellulosic biomass. In the original version, the main products, ethyl esters, are produced in acidic medium containing ethanol, using a one-pot conversion system. Our research strategy for obtaining a high overall performance is based on two general concepts: (a) coupling of catalytic/chemical reactions that lead to desired products and (b) decoupling of reactions that produce unwanted products, by decreasing the effectiveness of these reactions. Concept (a) is realized by using oxidizers (hydrogen peroxide and Fenton’s reagent) that promote a higher production of carboxylic acids as main intermediates, while concept (b) contributes to a significant decrease of undesired formation of polymeric products. As result of these reaction coupling and decoupling, the overall yield of liquid products has been multiplied by a factor of 2.5 (from 27 to over 70 wt%). Not only the yields of products from cellulose and hemicellulose components experience considerable increases, but also the lignin component starts undergoing a noticeable conversion. Essentially, the AC3B process, in the most recent version, consumes ethanol that is partly used to produce liquid fuels and chemicals from lignocellulosic biomass. The other amount of feed ethanol is converted—via diethyl ether and over ZSM-5-based catalysts—into aromatics-rich gasoline and liquefied petroleum gas—grade hydrocarbons.

Graphical Abstract

Sequence of actions that have significantly improved the total product yield (RP): AC = acidic medium, HP = addition of hydrogen peroxide, DL-st = use of a delignification step, FR = use of a Fenton-type reagent, PIn = use of a polymerization inhibitor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cheng JJ (2010) In: Cheng J (ed) Biomass to renewable energy processes. CRC Press, Boca Raton

    Google Scholar 

  2. Keshwani DR (2010) In: Cheng J (ed) Biomass to renewable energy processes. CRC Press, Boca Raton, p 7

    Google Scholar 

  3. Le Van Mao R, Zhao Q, Dima G, Petraccone D (2011) Catal Lett 141:271

    Article  Google Scholar 

  4. Girisuta B, Janssen LPBM, Heeres HJ (2006) Chem Eng Res Des 84:339

    Article  CAS  Google Scholar 

  5. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  Google Scholar 

  6. Quresshi N, Blaschek HP (2010) In: Vertes AA, Qureshi N, Blaschek HP, Yukawa H (eds) Biomass to Biofuels: Strategies for Global Industries. Wiley, U.K, p 347

    Chapter  Google Scholar 

  7. Andrews DH, Singh RP (1979) In: Singh RP (ed) The Bleaching of Pulp, 3rd edn. Tappi Press, Atlanta, p 211

    Google Scholar 

  8. Legrini O, Oliveros E, Braun AM (1993) Chem Rev 93:671

    Article  CAS  Google Scholar 

  9. Xiang Q, Lee YY (2000) Appl Biochem Biotechnol 154:84–86

    Google Scholar 

  10. Merz JH, Waters WA (1949) J Chem Soc, S15; and references therein

  11. Mae K, Hasegawa I, Sakai N, Miura K (2000) Energy Fuels 14:1212

    Article  CAS  Google Scholar 

  12. Czapski G, Samuni A, Meisel D (1971) J Phys Chem 75:3271

    Article  CAS  Google Scholar 

  13. Simonetti DA, Dumesic JA (2009) Catal Rev 51:441

    Article  CAS  Google Scholar 

  14. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross RH (2006) In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries—industrial processes and products, vol 1. Wiley–VCH, Weinheim, p 139

    Google Scholar 

  15. Boudart M, Djega-Mariadassou G (1994) Catal Lett 29:7

    Article  CAS  Google Scholar 

  16. Mascal M, Nikitin EB (2010) ChemSusChem 3:1349

    Article  CAS  Google Scholar 

  17. Yan HT, Le Van Mao R (2011) Catal Lett 141:691

    Article  CAS  Google Scholar 

  18. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Ind Eng Chem Res 48:3713

    Article  CAS  Google Scholar 

  19. Hasegawa I, Inoue Y, Muranaka Y, Yasukawa T, Mae K (2011) Energy Fuels 25:791

    Article  CAS  Google Scholar 

  20. Le Van Mao R, Petraccone D, A Muntasar (Nov. 2011–Feb. 2012), Concordia University, unpublished data

  21. Jonsson S, Persson Y, Frankki S, Bavel BV, Lundstedt S, Haglund P, Tysklind M (2007) J Harzard Mater 149:86

    Article  CAS  Google Scholar 

  22. Wu Y, Zhou S, Qin F, Ye X, Zheng K (2010) J Harzard Mater 180:456

    Article  CAS  Google Scholar 

  23. Andrews J, Asaadi M, Clarke B, Ouki S, Zagdaa Y (2006) J Residuals Sci Technol 3:137

    CAS  Google Scholar 

  24. Ghazi D (1994) US Patent 5,332,842

  25. Sherwood CS (1956) US Patent 2,741,579

  26. Fitzpatrick SW (1990) US Patent 4,897,497

  27. Wagner GM, Hoch PE (1963) US Patent 3,101,278

  28. Nguyen TM, Le Van Mao R (1990) Appl Catal 58:119

    Article  CAS  Google Scholar 

  29. Le Van Mao R, Nguyen TM, McLaughlin GP (1889) Appl Catal 48:265

    Google Scholar 

  30. Le Van Mao R, Ly D, Yao J (1992) In: Albright LF, Crynes BL, Nowak S (eds) Novel production methods for ethylene, light hydrocarbons and aromatics, Chem ind 46. M Dekker, New York

    Google Scholar 

  31. Le Van Mao R, Dao LH, US Patent 4,698,452 (6 Oct. 1987)

  32. Dahl IM, Kolboe S (1996) J Catal 161:304

    Article  CAS  Google Scholar 

  33. Muntasar A, Le Van Mao R, Yan HT (2010) Ind Eng Chem Res 49:3611

    Article  CAS  Google Scholar 

  34. Behrendt F, Neubauer Y, Oevermann M, Wilmes B, Zobel N (2008) Chem Eng Technol 31:667

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Myriam Posner, Chief of Technical Staff of the Department of Chemistry & Biochemistry, the Science Technical Center (Mr. Richard Allix and Mr. Aldo Dissenga), for technical assistance, and NSERC (Natural Science and Engineering Council of Canada) for research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Le Van Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Van Mao, R., Muntasar, A., Petraccone, D. et al. AC3B Technology for Direct Liquefaction of Lignocellulosic Biomass: New Concepts of Coupling and Decoupling of Catalytic/Chemical Reactions for Obtaining a Very High Overall Performance. Catal Lett 142, 667–675 (2012). https://doi.org/10.1007/s10562-012-0825-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0825-1

Keywords

Navigation