Skip to main content

Advertisement

Log in

Steam Reforming on Transition-Metal Carbides from Density-Functional Theory

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A screening study of the steam reforming reaction on clean and oxygen covered early transition-metal carbides surfaces is performed by means of density-functional theory calculations. It is found that carbides provide a wide spectrum of reactivities, from too reactive via suitable to too inert. Several molybdenum-based systems are identified as possible steam reforming catalysts. The findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.

Graphical Abstract

Calculated potential energy diagram for the steam reforming reaction on transition metal carbide TMC(111) and TM2C(100) surfaces

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rostrup-Nielsen JR, Sehested J, Nørskov JK (2002) Adv Catal 47:65

    Article  CAS  Google Scholar 

  2. Bengaard HS, Nørskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) J Catal 209:365

    Article  CAS  Google Scholar 

  3. Helveg S, López-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Nørskov JK (2004) Nature 427:426

    Article  CAS  Google Scholar 

  4. Jones G, Jakobsen JG, Shimb SS, Kleis J, Andersson MP, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen JR, Chorkendorff I, Sehested J, Nørskov JK (2008) J Catal 259:147

    Article  CAS  Google Scholar 

  5. Levy RB, Boudart M (1973) Science 181:547

    Article  CAS  Google Scholar 

  6. Volpe L, Boudart M (1985) J Solid State Chem 59:348

    Article  CAS  Google Scholar 

  7. Lee JS, Oyama ST, Boudart M (1987) J Catal 106:125

    Article  CAS  Google Scholar 

  8. Lee JS, Lee KH, Lee JY (1992) J Phys Chem 96:362

    Article  CAS  Google Scholar 

  9. Oyama ST (1996) In: Oyama ST (ed) The chemistry of transition metal carbides and nitrides. Blackie Academic and Professional, Glasgow

  10. York APE, Claridge JB, Brungs AJ, Tsang SC, Green MLH (1997) Chem Commun 1:39

    Article  Google Scholar 

  11. Claridge JB, York APE, Brungs AJ, Marquez-Alvares C, Sloan J, Tsang SC, Green MLH (1998) J Catal 180:85

    Article  CAS  Google Scholar 

  12. Zhang YF, Li JQ, Zhou LX (2001) Surf Sci 488:256

    Article  CAS  Google Scholar 

  13. Kitchin J, Nørskow JK, Barteau MA, Chen JG (2005) Catal Today 105:66

    Article  CAS  Google Scholar 

  14. Viñes F, Sousa C, Illas F, Liu P, Rodriguez JA (2007) J Phys Chem C 111:1307

    Article  Google Scholar 

  15. Vojvodic A, Ruberto C, Lundqvist BI (2006) Surf Sci 600:3619

    Article  CAS  Google Scholar 

  16. Ruberto C, Vojvodic A, Lundqvist BI (2006) Surf Sci 600:1612

    Article  CAS  Google Scholar 

  17. Ruberto C, Lundqvist BI (2007) Phys Rev B 75:235438

    Article  Google Scholar 

  18. Ruberto C, Vojvodic A, Lundqvist BI (2007) Solid State Commun 141:48

    Article  CAS  Google Scholar 

  19. Vojvodic A, Ruberto C, Lundqvist BI (2010) J Phys Condens Matter 22:375504

    Article  CAS  Google Scholar 

  20. Vojvodic A, Hellman A, Ruberto C, Lundqvist BI (2009) Phys Rev Lett 103:146103

    Article  CAS  Google Scholar 

  21. Viñes F, Sousa C, Illas F, Liu P, Rodriguez JA (2007) J Phys Chem C 111:16982

    Article  Google Scholar 

  22. Didziulis SV, Frantz P, Fernandez-Torres LC, Guenard RL, El-bjeirami O, Perry SS (2001) J Phys Chem 105:5196

    Article  CAS  Google Scholar 

  23. Liu P, Rodriguez JA (2004) J Chem Phys 120:5414

    Article  CAS  Google Scholar 

  24. Ren J, Huo C-F, Wang J, Jiao H (2005) Surf Sci 596:212

    Article  CAS  Google Scholar 

  25. Pistonesi C, Juan A, Farkas AP, Solymosi F (2008) Surf Sci 602:13

    Article  Google Scholar 

  26. Ren J, Huo C-F, Wang J, Cao Z, Li Y-W, Jiao H (2006) Surf Sci 600:2329

    Article  CAS  Google Scholar 

  27. Tominaga H, Hagai M (2005) J Phys Chem B 109:20415

    Article  CAS  Google Scholar 

  28. Liu P, Rodriguez JA (2006) J Phys Chem B 110:19418

    Article  CAS  Google Scholar 

  29. Viñes F, Rodriguez JA, Liu P, Illas F (2008) J Catal 260:103

    Article  Google Scholar 

  30. Dubois J, Epicier T, Esnouf C, Fantozzi G, Convert P (1988) Acta Metall 36:1891

    Article  CAS  Google Scholar 

  31. Velikanova TY, Kublii VZ, Khaenko BV (1988) Soviet Powder Metall Met Ceram 27:891

    Google Scholar 

  32. Parthe E, Sadagopan V (1963) Acta Crystallogr 16:202

    Article  CAS  Google Scholar 

  33. Otani S, Ishizawa Y (1995) J Cryst Growth 154:202

    Article  CAS  Google Scholar 

  34. St. Clair TP, Oyama ST, Cox DF, Otani S, Ishizawa Y, Lo R-L, Fukui K, Iwasawa Y (1999) Surf Sci 426:187

    Article  CAS  Google Scholar 

  35. St. Clair TP, Oyama ST, Cox DF (2000) Surf Sci 468:62

    Article  CAS  Google Scholar 

  36. Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4:56. http://wiki.fysik.dtu.dk/dacapo

  37. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413

    Article  Google Scholar 

  38. Fu C-L, Ho K-M (1983) Phys Rev B 28:5480

    Article  CAS  Google Scholar 

  39. Nakamura K, Yashima M (2005) Mater Sci Eng B 148:69

    Article  Google Scholar 

  40. Férnandez Guillermet A, Häglund J, Grimvall G (1992) Phys Rev B 45:11557

    Article  Google Scholar 

  41. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) J Catal 209:275

    Article  Google Scholar 

  42. Aono M, Oshima C, Zaima S, Otani S, Ishizawa Y (1981) Jpn J Appl Phys 20:L829

    Article  CAS  Google Scholar 

  43. Rundgren J, Gauthier Y, Baudoing-Savois R, Joly Y, Johansson LI (1992) Phys Rev B 45:4445

    Article  CAS  Google Scholar 

  44. Brandshaw AM, van der Veen JF, Himpsel FJ, Eastman DE (1980) Solid State Commun 37:37

    Article  Google Scholar 

  45. Oshima C, Aono M, Zaima S, Shibata Y, Kawai S (1981) J Less-Common Met 82:69

    Article  CAS  Google Scholar 

  46. Wood J, Chen JE, Kadin AM, Burkhardt RW, Ovshinsky SR (1985) IEEE Trans Magn 21:842

    Article  Google Scholar 

  47. Haase EL (1987) J Low Temp Phys 69:245

    Article  CAS  Google Scholar 

  48. Okuyama F, Fujimoto Y, Kato S, Kondo H (1985) Appl Phys A 38:275

    Article  Google Scholar 

  49. Lu J, Hugosson H, Eriksson O, Nordström L, Jansson U (2000) Thin Solid Films 370:203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges support from the Swedish Research Council and from the U.S. Department of Energy, Office of Basic Energy Sciences. The calculations were performed at HPC2N via the Swedish National Infrastructure for Computing. The author thanks Anders Hellman, Carlo Ruberto, Bengt I. Lundqvist and Jens K. Nørskov for constructive discussions and comments on the manuscripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Vojvodic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vojvodic, A. Steam Reforming on Transition-Metal Carbides from Density-Functional Theory. Catal Lett 142, 728–735 (2012). https://doi.org/10.1007/s10562-012-0820-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0820-6

Keywords

Navigation