Skip to main content

Advertisement

Log in

Catalysis for Lignocellulosic Biomass Processing: Methodological Aspects

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Increasing value of lignocellulosic biomass through catalytic approaches is an area, which recently attracted a lot of attention. Due to specific features of such catalysis, different from more traditional heterogeneous catalysis in transformations of petrochemicals, the authors considered important to address various methodological issues, such as product analysis, catalytic measurements, influence of mass transfer, development of kinetic expressions, reactions intensification by application of microreactors and technology development in general. Potential pitfalls, challenges and research opportunities are highlighted.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Future Perspectives in Catalysis, (2009) ISBN: 9789081408615, http://www.vermeer.net/pub/communication/downloads/future-perspectives-in-cata.pdf

  2. Lange JP (2007) In: Centi G, van Santen R (eds) Catalysis for renewables, Chap. 2. Wiley, Weinheim

  3. Akien G, Qi L, Horvath IT (2010) In: Crocker M (ed) Thermochemical conversion of biomass to liquid fuels and chemicals, Chap. 14. RSC Energy and Environmental Series, Cambridge

  4. Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493

    Article  CAS  Google Scholar 

  5. Atutxa A, Aguado R, Gayubo AG, Olazar M, Bilbao J (2005) Energy Fuels 19:765

    Article  CAS  Google Scholar 

  6. Bekkum H, Maat L (2007) In: Centi G, van Santen R (eds) Catalysis for renewables, Chap. 5. Wiley, Weinheim

  7. Bell DA, Towler BF (2011) Coal gasification and its applications. Elsevier, Amsterdam

    Google Scholar 

  8. Bozell JJ, Petersen GR (2010) Green Chem 12:539

    Article  CAS  Google Scholar 

  9. Bridgwater AV (2002) Fast pyrolysis of biomass: a handbook, vol 2. CPL Press, Newbury

    Google Scholar 

  10. Bridgwater AV (1996) Catal Today 29:285

    Article  CAS  Google Scholar 

  11. Bridgwater AV (2012) Biomass Bioenergy 38:68

    Article  CAS  Google Scholar 

  12. Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed Engl 46:7164

    Article  CAS  Google Scholar 

  13. Chiaramonti D, Oasmaa A, Solantausta Y (2007) Renew Sust Energy Rev 11:1056

    Article  CAS  Google Scholar 

  14. Clark JH, Deswarte FI, Farmer TJ (2008) Biofuels Bioprod Bior 3:72

    Article  Google Scholar 

  15. Claus P, Vogel H (2008) Chem Eng Technol 31:678

    Article  CAS  Google Scholar 

  16. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411

    Article  CAS  Google Scholar 

  17. Dhepe PL, Fukuoka A (2008) ChemSusChem 1:969

    Article  CAS  Google Scholar 

  18. Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Energy Fuels 20:1727

    Article  CAS  Google Scholar 

  19. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  Google Scholar 

  20. Jolle V, Chambon F, Rataboul F, Cabiac A, Pinel C, Guillon E, Essayem N (2009) Green Chem 11:2052

    Article  Google Scholar 

  21. Kumar Guha S, Kobayashi H, Fukuoka A (2010) In Crocker M (ed) Thermochemical conversion of biomass to liquid fuels and chemicals, Chap. 13. RSC Energy and Environmental Series, Cambridge

  22. Lestari S, Mäki-Arvela P, Beltramini J, Max Lu GQ, Murzin DYu (2009) ChemSusChem 2:1109

    Article  CAS  Google Scholar 

  23. Lin YuC, Huber GW (2009) Energy Environ Sci 2:68

    Article  CAS  Google Scholar 

  24. Mohan D, Pittman CU Jr, Steele PH (2006) Energy Fuels 20:848

    Article  CAS  Google Scholar 

  25. Murzin DYu, Maki-Arvela P (2010) In: Crocker M (ed) Thermochemical conversion of biomass to liquid fuels and chemicals, Chap. 19. RSC Energy and Environmental Series, Cambridge

  26. Murzin DYu, Simakova IL (2011) Catal Ind 3:218

    Article  Google Scholar 

  27. Murzin DYu, Simakova IL (2012) In: Schlögl R (ed) Comprehensive inorganic chemistry, surface inorganic chemistry and metal-based catalysis. Elsevier, Amsterdam

  28. Murzin DYu, Mäki- Arvela P, Simakova IL (2012) Triglycerides and oils for biofuels, Kirk-Othmer Encyclopedia of Chemical Technology, Published Online: 13 Jan 2012. doi:10.1002/0471238961.trigmurz.a01

  29. Mäki Arvela P, Holmbom B, Salmi T, Murzin DYu (2007) Catal Rev Sci Eng 49:197

    Article  Google Scholar 

  30. Mäki-Arvela P, Salmi T, Holmbom B, Willför S, Murzin DYu (2011) Chem Rev 111:5638

    Article  Google Scholar 

  31. Petrus L, Nordermeer MA (2006) Green Chem 8:861

    Article  CAS  Google Scholar 

  32. Rinaldi R, Schueth F (2009) ChemSusChem 2:1096

    Article  CAS  Google Scholar 

  33. Rinaldi R, Schueth F (2009) Energy Environ Sci 2:610

    Article  CAS  Google Scholar 

  34. Simonetti DA, Dumesic JA (2009) Catal Rev 51:441

    Article  CAS  Google Scholar 

  35. Snåre M, Mäki-Arvela P, Simakova IL, Myllyoja J, Murzin DYu (2009) Russ J Phys Chem B 3:17

    Article  Google Scholar 

  36. Werpy T, Petersen G (2004) Top value added chemicals from biomass, vol 1. US Department of Energy, Battelle

    Google Scholar 

  37. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110:3552

    Article  CAS  Google Scholar 

  38. Lindroos M, Mäki-Arvela P, Kumar N, Salmi T, Murzin DYu (2003) Catal Org React 587

  39. Wärnå J, Flores Geant M, Salmi T, Hamunen A, Orte J, Hartonen R, Murzin DYu (2006) Ind Eng Chem Res 45:7067

    Article  Google Scholar 

  40. Mäki-Arvela P, Martin G, Simakova I, Tokarev A, Wärnå J, Hemming J, Holmbom B, Salmi T, Murzin DYu (2009) Chem Eng J 154:45

    Article  Google Scholar 

  41. Lilja J, Murzina E, Grénman H, Vainio H, Salmi T, Murzin DYu (2005) React Funct Polym 64:111

    Article  CAS  Google Scholar 

  42. Reddy KR, Kumar NS (2006) Synlett 2246

  43. Käldström M, Kumar N, Murzin DYu (2011) Catal Today 167:91

    Article  Google Scholar 

  44. Holmbom B (1998) In: Sjöström E, Alén R (eds) Analytical methods on wood chemistry, pulping and papermaking. Springer, Berlin, pp 125–148

  45. Käldström M, Kumar N, Heikkilä T, Tiitta M, Salmi T, Murzin DYu (2010) ChemCatChem 2:539

    Article  Google Scholar 

  46. Murzin D, Salmi T (2005) Catalytic kinetics. Elsevier, Amsterdam

    Google Scholar 

  47. Burschtein AI, Zcharikov AA, Temkin SI (1988) J Phys B 21:1907

    Article  Google Scholar 

  48. Temkin MI (1977) Kinet Katal 28:493

    Google Scholar 

  49. Hájek J, Murzin DYu (2004) Ind Eng Chem Res 43:2030

    Article  Google Scholar 

  50. Murzin DYu, Konyukhov VYu, Kul’kova NV, Temkin MI (1992) Kinet Catal 33:728

    CAS  Google Scholar 

  51. Frennet A, Lienard G, Crucq A, Degols L (1978) J Catal 53:150

    Article  CAS  Google Scholar 

  52. Frennet A (1992) Catal Today 12:131

    Article  CAS  Google Scholar 

  53. Siffert S, Murzin DYu, Garin F (1999) Appl Catal A 178:85

    Article  CAS  Google Scholar 

  54. Cabrera MI, Grau RJ (2008) J Mol Catal A 287:23

    Google Scholar 

  55. Cabrera MI, Grau RJ (2006) J Mol Catal A 260:269

    Article  CAS  Google Scholar 

  56. Bernas H, Taskinen A, Wärnå J, Murzin DYu (2009) J Mol Catal A 306:33

    Article  CAS  Google Scholar 

  57. Bell AT (2003) Science 299:1688

    Article  CAS  Google Scholar 

  58. Pernicone N (2003) Cattech 7:196

    Article  CAS  Google Scholar 

  59. Schlögl R, Abd Hamid SB (2004) Angew Chem Int Ed 43:1628

    Article  Google Scholar 

  60. Bond GC (1993) Acc Chem Res 26:490

    Article  CAS  Google Scholar 

  61. Boudart M (1969) Adv Catal 20:153

    Article  CAS  Google Scholar 

  62. Somorjai GA, Park JY (2008) Angew Chem Int Ed 47:9161

    Article  Google Scholar 

  63. Somorjai GA, Park JY (2008) Topics Catal 49:126

    Article  CAS  Google Scholar 

  64. Klasovsky F, Claus P (2008) In: Corain B, Schmid G, Toshima N (eds) Metal nanoclusters in catalysis and materials science: the issue of size control, Chap. 8. Elsevier, Amsterdam

  65. Murzin DYu (2010) J Catal 276:85

    Article  CAS  Google Scholar 

  66. Simakova O, Kusema B, Campo B, Leino AR, Kordas K, Pitchon V, Mäki-Arvela P, Murzin DYu (2011) J Phys Chem C 115:10

    Article  Google Scholar 

  67. Kusema BT, Campo BC, Simakova OA, Leino AR, Kordas K, Mäki-Arvela P, Salmi T, Murzin DYu (2011) ChemCatChem 3:1789

  68. Li Y, Somorjai GA (2010) Nano Lett 10:2289

    Article  CAS  Google Scholar 

  69. Goesmann H, Feldmann C (2010) Angew Chem Int Ed 49:1362

    Article  CAS  Google Scholar 

  70. de Jong K (2009) Synthesis of solid catalysts. Wiley, Weinheim

    Book  Google Scholar 

  71. Gaigneaux EM, Devillers M, De Vos DE, Hermans S, Jacobs PA, Martens JA, Ruiz P (eds) (2006) Scientific bases for the preparation of heterogeneous catalysts. Elsevier, Amsterdam

    Google Scholar 

  72. Delmon B (1969) Introduction a la Cinetique Heterogene. TECHNIP, Paris

    Google Scholar 

  73. Gottstein G (2004) Physical foundations of materials science. Springer, Berlin

    Google Scholar 

  74. Mondloch JE, Bayram E, Finke RG (2012) J Mol Catal 335:1

    Article  Google Scholar 

  75. Murzin DYu, Simakova OA, Simakova IL, Parmon VN (2011) React Kinet Mech Catal 104:259

    Article  CAS  Google Scholar 

  76. Barone G, Li Manni G, Prestianni A, Duca D, Bernas H, Murzin DYu (2010) J Mol Catal A Chem 333:136

    Article  CAS  Google Scholar 

  77. Nieminen V, Honkala K, Taskinen A, Murzin DYu (2008) J Phys Chem C 112:6822

    Article  CAS  Google Scholar 

  78. Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Science 330:74

    Article  CAS  Google Scholar 

  79. Hessel V, Löwe H, Mueller A, Kolb G (2005) Chemical micro process engineering. Wiley-VCH, Weinhem

    Book  Google Scholar 

  80. Armor AN (2011) Catal Today 178:8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Yu. Murzin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murzin, D.Y., Salmi, T. Catalysis for Lignocellulosic Biomass Processing: Methodological Aspects. Catal Lett 142, 676–689 (2012). https://doi.org/10.1007/s10562-012-0812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0812-6

Keywords

Navigation