Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The First Case of Competitive Heterogeneously Catalyzed Hydrogenation using Continuous-Flow Fixed-Bed Reactor System: Hydrogenation of Binary Mixtures of Activated Ketones on Pt-Alumina and on Pt-Alumina-Cinchonidine Catalysts

  • 279 Accesses

  • 13 Citations

Abstract

Under the experimental conditions of the Orito reaction the competitive hydrogenations of four binary mixtures of ethyl pyruvate (EP), methyl benzoylformate (MBF), pyruvic aldehyde dimethyl acetal (PA) and 2,2-diethoxyacetophenone (DAP) on unmodified Pt/Al2O3 (racemic hydrogenation) and catalyst modified by cinchonidine (chiral hydrogenation) were studied using continuous-flow fixed-bed reactor system (CFBR). Conversions of chiral and racemic hydrogenations were determined under 4 MPa H2 pressure, at 293 K using toluene/acetic acid 9/1 as solvent. In the competitive chiral hydrogenation of MBF + EP and DAP + PA binary mixtures (S1 + S2) a new phenomenon was observed: namely the EP and PA are hydrogenated faster than MBF and DAP, whereas in racemic one the MBF and DAP are hydrogenated faster than the former ketones. The phenomenon verified for the first time in CFBR is dependent on the adsorption mode of the surface complexes of various compositions (S1–Pt, S2–Pt, S1–CD–Pt, S2–CD–Pt, CD = cinchonidine). In the chiral hydrogenation of DAP a rate decrease, i.e., “ligand deceleration” was observed instead of rate enhancement.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Scheme 1
Fig. 2
Scheme 2

References

  1. 1.

    Blaser HU, Müller M (1991) Stud Surf Sci Catal 59:73

  2. 2.

    Jannes G, Dubois V (eds) (1995) Chiral reactions in heterogeneous catalysis. Plenum Press, New York

  3. 3.

    De Vos DE, Vankelecom IFJ, Jacobs PA (eds) (2000) Chiral catalyst immobilization and recycling. Wiley-VCH, Weinheim

  4. 4.

    Murzin DY, Maki-Arvela P, Toukoniitty E, Salmi T (2005) Catal Rev Sci Eng 47:175

  5. 5.

    Heitbaum M, Glorius F, Escher I (2006) Angew Chem Int Ed 45:4732

  6. 6.

    Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863

  7. 7.

    Ding K, Uozumi Y (eds) (2008) Handbook of asymmetric heterogeneous catalysis. Wiley-VCH, Weinheim

  8. 8.

    Hessel V, Schouten JC, Renken A, Wang Y, Yoshida J-I (eds) (2009) Handbook of micro reactors. Wiley-VCH, Weinheim

  9. 9.

    Luis SV, Garcia-Verdugo E (eds) (2010) Chemical reactions and processes under flow conditions. RSC Green Chemistry, London

  10. 10.

    Meheux PA, Ibbotson A, Wells PB (1991) J Catal 128:387

  11. 11.

    Künzle N, Hess R, Mallat T, Baiker A (1999) J Catal 186:239

  12. 12.

    You X, Li X, Xiang S, Zhang S, Xin Q, Li X, Li C (2000) Stud Surf Sci Catal 130:3375

  13. 13.

    Li X, Li C (2001) Catal Lett 77:251

  14. 14.

    Toukoniitty E, Murzin DYu (2004) Catal Lett 93:171

  15. 15.

    Jenkins RL, McMorn P, Hutchings GJ (2005) Catal Lett 100:255

  16. 16.

    Gao F, Chen L, Garland M (2006) J Catal 238:402

  17. 17.

    Szöllősi Gy, Hermán B, Fülöp F, Bartók M (2006) React Kinet Catal Lett 88:391

  18. 18.

    Toukoniitty E, Mäki-Arvela P, Kumar N, Salmi T, Murzin DYu (2004) Catal Lett 95:179

  19. 19.

    Meier DM, Mallat T, Ferri D, Baiker A (2006) J Catal 244:260

  20. 20.

    Szöllősi Gy, Cserényi Sz, Fülöp F, Bartók M (2008) J Catal 260:245

  21. 21.

    Szöllősi Gy, Cserényi Sz, Bartók M (2010) Catal Lett 134:264

  22. 22.

    Szöllősi G, Cserényi S, Bucsi I, Bartók T, Fülöp F, Bartók M (2010) Appl Catal A Gen 382:263

  23. 23.

    Cserényi S, Szőllősi G, Szőri K, Fülöp F, Bartók M (2010) Catal Commun 12:14

  24. 24.

    Orito Y, Imai S, Niwa S (1979) J Chem Soc Jpn 670:1118

  25. 25.

    Smith HA (1967) Ann NY Acad Sci 145:72

  26. 26.

    Kieboom AP, van Bekkum H (1972) J Catal 25:342

  27. 27.

    Kraus M (1980) Adv Catal 29:151

  28. 28.

    Červený L, Ružička V (1981) Adv Catal 30:30

  29. 29.

    van Druten GMR, Ponec V (2000) Appl Catal A Gen 191:153

  30. 30.

    Canning AS, Jackson SD, Monaghan A, Wright T (2006) Catal Today 116:22

  31. 31.

    Krupka J, Severa Z, Pasek J (2006) React Kinet Catal Lett 89:359

  32. 32.

    Balázsik K, Szőri K, Szőllősi Gy, Bartók M (2011) Chem Commun 47:1551

  33. 33.

    Sugimura T, Uchida T, Watanabe J, Kubota T, Okamoto Y, Misaki T, Okuyama T (2009) J Catal 262:57

  34. 34.

    Bartók M, Sutyinszki M, Felföldi K (2003) J Catal 220:207

  35. 35.

    Bartók M, Sutyinszki M, Balázsik K, Szőllősi Gy (2005) Catal Lett 100:161

  36. 36.

    Lavoie S, Laliberte MA, Temprano I, McBreen PH (2006) J Am Chem Soc 128:7588

  37. 37.

    Blaser HU, Studer M (2007) Acc Chem Res 40:1348

  38. 38.

    Zaera F (2008) J Phys Chem C 112:16196

  39. 39.

    Tálas E, Margitfalvi JL (2009) Chirality 22:3

  40. 40.

    Bartók M (2010) Chem Rev 110:1663

  41. 41.

    Studer M, Burkhardt S, Blaser HU (1999) Chem Commun 1727

  42. 42.

    Balázsik K, Bartók M (2004) J Catal 224:463

  43. 43.

    Török B, Felföldi K, Szakonyi G, Bartók M (1997) Ultrason Sonochem 4:301

  44. 44.

    Bakos I, Szabó S, Bartók M, Kálmán E (2002) J Electroanal Chem 532:113

Download references

Acknowledgments

Financial support by the Hungarian National Science Foundation (OTKA Grant K 72065) is highly appreciated. The study was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (Gy. Szőllősi).

Author information

Correspondence to György Szőllősi or Mihály Bartók.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Szőllősi, G., Makra, Z., Fülöp, F. et al. The First Case of Competitive Heterogeneously Catalyzed Hydrogenation using Continuous-Flow Fixed-Bed Reactor System: Hydrogenation of Binary Mixtures of Activated Ketones on Pt-Alumina and on Pt-Alumina-Cinchonidine Catalysts. Catal Lett 141, 1616 (2011). https://doi.org/10.1007/s10562-011-0705-0

Download citation

Keywords

  • Chiral and racemic hydrogenation
  • Platinum
  • Cinchonidine
  • Ethyl pyruvate
  • Methyl benzoylformate
  • Pyruvic aldehyde dimethyl acetal
  • 2,2-Diethoxyacetophenone
  • Continuous-flow reactor