Catalysis Letters

, 141:1616 | Cite as

The First Case of Competitive Heterogeneously Catalyzed Hydrogenation using Continuous-Flow Fixed-Bed Reactor System: Hydrogenation of Binary Mixtures of Activated Ketones on Pt-Alumina and on Pt-Alumina-Cinchonidine Catalysts

Article

Abstract

Under the experimental conditions of the Orito reaction the competitive hydrogenations of four binary mixtures of ethyl pyruvate (EP), methyl benzoylformate (MBF), pyruvic aldehyde dimethyl acetal (PA) and 2,2-diethoxyacetophenone (DAP) on unmodified Pt/Al2O3 (racemic hydrogenation) and catalyst modified by cinchonidine (chiral hydrogenation) were studied using continuous-flow fixed-bed reactor system (CFBR). Conversions of chiral and racemic hydrogenations were determined under 4 MPa H2 pressure, at 293 K using toluene/acetic acid 9/1 as solvent. In the competitive chiral hydrogenation of MBF + EP and DAP + PA binary mixtures (S1 + S2) a new phenomenon was observed: namely the EP and PA are hydrogenated faster than MBF and DAP, whereas in racemic one the MBF and DAP are hydrogenated faster than the former ketones. The phenomenon verified for the first time in CFBR is dependent on the adsorption mode of the surface complexes of various compositions (S1–Pt, S2–Pt, S1–CD–Pt, S2–CD–Pt, CD = cinchonidine). In the chiral hydrogenation of DAP a rate decrease, i.e., “ligand deceleration” was observed instead of rate enhancement.

Graphical Abstract

Keywords

Chiral and racemic hydrogenation Platinum Cinchonidine Ethyl pyruvate Methyl benzoylformate Pyruvic aldehyde dimethyl acetal 2,2-Diethoxyacetophenone Continuous-flow reactor 

References

  1. 1.
    Blaser HU, Müller M (1991) Stud Surf Sci Catal 59:73CrossRefGoogle Scholar
  2. 2.
    Jannes G, Dubois V (eds) (1995) Chiral reactions in heterogeneous catalysis. Plenum Press, New YorkGoogle Scholar
  3. 3.
    De Vos DE, Vankelecom IFJ, Jacobs PA (eds) (2000) Chiral catalyst immobilization and recycling. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Murzin DY, Maki-Arvela P, Toukoniitty E, Salmi T (2005) Catal Rev Sci Eng 47:175CrossRefGoogle Scholar
  5. 5.
    Heitbaum M, Glorius F, Escher I (2006) Angew Chem Int Ed 45:4732CrossRefGoogle Scholar
  6. 6.
    Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863CrossRefGoogle Scholar
  7. 7.
    Ding K, Uozumi Y (eds) (2008) Handbook of asymmetric heterogeneous catalysis. Wiley-VCH, WeinheimGoogle Scholar
  8. 8.
    Hessel V, Schouten JC, Renken A, Wang Y, Yoshida J-I (eds) (2009) Handbook of micro reactors. Wiley-VCH, WeinheimGoogle Scholar
  9. 9.
    Luis SV, Garcia-Verdugo E (eds) (2010) Chemical reactions and processes under flow conditions. RSC Green Chemistry, LondonGoogle Scholar
  10. 10.
    Meheux PA, Ibbotson A, Wells PB (1991) J Catal 128:387CrossRefGoogle Scholar
  11. 11.
    Künzle N, Hess R, Mallat T, Baiker A (1999) J Catal 186:239CrossRefGoogle Scholar
  12. 12.
    You X, Li X, Xiang S, Zhang S, Xin Q, Li X, Li C (2000) Stud Surf Sci Catal 130:3375CrossRefGoogle Scholar
  13. 13.
    Li X, Li C (2001) Catal Lett 77:251CrossRefGoogle Scholar
  14. 14.
    Toukoniitty E, Murzin DYu (2004) Catal Lett 93:171CrossRefGoogle Scholar
  15. 15.
    Jenkins RL, McMorn P, Hutchings GJ (2005) Catal Lett 100:255CrossRefGoogle Scholar
  16. 16.
    Gao F, Chen L, Garland M (2006) J Catal 238:402CrossRefGoogle Scholar
  17. 17.
    Szöllősi Gy, Hermán B, Fülöp F, Bartók M (2006) React Kinet Catal Lett 88:391CrossRefGoogle Scholar
  18. 18.
    Toukoniitty E, Mäki-Arvela P, Kumar N, Salmi T, Murzin DYu (2004) Catal Lett 95:179CrossRefGoogle Scholar
  19. 19.
    Meier DM, Mallat T, Ferri D, Baiker A (2006) J Catal 244:260CrossRefGoogle Scholar
  20. 20.
    Szöllősi Gy, Cserényi Sz, Fülöp F, Bartók M (2008) J Catal 260:245CrossRefGoogle Scholar
  21. 21.
    Szöllősi Gy, Cserényi Sz, Bartók M (2010) Catal Lett 134:264CrossRefGoogle Scholar
  22. 22.
    Szöllősi G, Cserényi S, Bucsi I, Bartók T, Fülöp F, Bartók M (2010) Appl Catal A Gen 382:263CrossRefGoogle Scholar
  23. 23.
    Cserényi S, Szőllősi G, Szőri K, Fülöp F, Bartók M (2010) Catal Commun 12:14CrossRefGoogle Scholar
  24. 24.
    Orito Y, Imai S, Niwa S (1979) J Chem Soc Jpn 670:1118Google Scholar
  25. 25.
    Smith HA (1967) Ann NY Acad Sci 145:72CrossRefGoogle Scholar
  26. 26.
    Kieboom AP, van Bekkum H (1972) J Catal 25:342CrossRefGoogle Scholar
  27. 27.
    Kraus M (1980) Adv Catal 29:151CrossRefGoogle Scholar
  28. 28.
    Červený L, Ružička V (1981) Adv Catal 30:30Google Scholar
  29. 29.
    van Druten GMR, Ponec V (2000) Appl Catal A Gen 191:153CrossRefGoogle Scholar
  30. 30.
    Canning AS, Jackson SD, Monaghan A, Wright T (2006) Catal Today 116:22CrossRefGoogle Scholar
  31. 31.
    Krupka J, Severa Z, Pasek J (2006) React Kinet Catal Lett 89:359CrossRefGoogle Scholar
  32. 32.
    Balázsik K, Szőri K, Szőllősi Gy, Bartók M (2011) Chem Commun 47:1551CrossRefGoogle Scholar
  33. 33.
    Sugimura T, Uchida T, Watanabe J, Kubota T, Okamoto Y, Misaki T, Okuyama T (2009) J Catal 262:57CrossRefGoogle Scholar
  34. 34.
    Bartók M, Sutyinszki M, Felföldi K (2003) J Catal 220:207CrossRefGoogle Scholar
  35. 35.
    Bartók M, Sutyinszki M, Balázsik K, Szőllősi Gy (2005) Catal Lett 100:161CrossRefGoogle Scholar
  36. 36.
    Lavoie S, Laliberte MA, Temprano I, McBreen PH (2006) J Am Chem Soc 128:7588CrossRefGoogle Scholar
  37. 37.
    Blaser HU, Studer M (2007) Acc Chem Res 40:1348CrossRefGoogle Scholar
  38. 38.
    Zaera F (2008) J Phys Chem C 112:16196CrossRefGoogle Scholar
  39. 39.
    Tálas E, Margitfalvi JL (2009) Chirality 22:3CrossRefGoogle Scholar
  40. 40.
    Bartók M (2010) Chem Rev 110:1663CrossRefGoogle Scholar
  41. 41.
    Studer M, Burkhardt S, Blaser HU (1999) Chem Commun 1727Google Scholar
  42. 42.
    Balázsik K, Bartók M (2004) J Catal 224:463CrossRefGoogle Scholar
  43. 43.
    Török B, Felföldi K, Szakonyi G, Bartók M (1997) Ultrason Sonochem 4:301CrossRefGoogle Scholar
  44. 44.
    Bakos I, Szabó S, Bartók M, Kálmán E (2002) J Electroanal Chem 532:113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Stereochemistry Research Group of the Hungarian Academy of SciencesSzegedHungary
  2. 2.Department of Organic ChemistryUniversity of SzegedSzegedHungary
  3. 3.Institute of Pharmaceutical ChemistryUniversity of SzegedSzegedHungary

Personalised recommendations