Skip to main content
Log in

Kinetics and Mechanisms of Homogeneous Catalytic Reactions. Part 11. Regioselective Hydrogenation of Quinoline Catalyzed by Rhodium Systems Containing 1,2-Bis(diphenylphosphino)ethane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The system prepared in situ by addition of two equivalents of 1,2-bis(diphenylphosphino)ethane (dppe) to Rh2Cl2(COE)4 (COE = cyclooctene) showed to be an efficient and regioselective precatalyst for the hydrogenation of quinoline (Q). This reaction showed to be independent of the Q concentration and of fractional order on H2 and catalyst concentrations (1.5 and 0.6, respectively). The fractional order on catalyst concentration indicates that several catalytic species with different activities are present in the reaction medium; however, the cationic species [Rh (dppe)2]+ was the only phosphorous-containing compound detected by 31P{1H} NMR. For the acac salt of this cationic bis(dppe) complex, a kinetic study led to the rate law r = {K1k2/(1 + K1[H2])}[M][H2]2; [M(Q)(κ2-dppe)(κ1-dppe)]+ was proposed as the catalytically active species (CAS) of the cycle. The general mechanism involves a reversible oxidative addition of H2 to generate a dihydrido complex, which transfers the hydride ligands to the coordinated Q to yield species containing a 1,2-dihydroquinoline (DHQ) ligand, followed by a second oxidative addition of H2, considered as the rate-determining step of the cycle; hydrogen transfer toward the DHQ ligand yields THQ, regenerates the CAS and restarts the catalytic cycle.

Graphical Abstract

The system prepared in situ by addition of two equivalents of 1,2-bis(diphenylphosphino)ethane (dppe) to Rh2Cl2(COE)4 (COE = cyclooctene) showed to be an efficient and regioselective precatalyst for the hydrogenation of quinoline (Q). This reaction proceeds through several catalytic species with different activities; the cationic species [Rh (dppe)2]+ was the only phosphorous compound detected by 31P{1H} NMR. For the acac salt of this cationic bis(dppe) complex, a kinetic study lead to the rate law r = {K1k2/(1 + K1[H2])}[M][H2]2; [M(Q)(κ2-dppe)(κ1-dppe)]+ was proposed as the catalytically active species (CAS) of the cycle. The general mechanism involves a reversible oxidative addition of H2 to generate a dihydrido complex, which transfer the hydride ligands to the coordinated Q to yield species containing a 1,2-dihydroquinoline (DHQ) ligand, followed by a second oxidative addition of H2, considered as the rate-determining step of the cycle; hydrogen transfer toward the DHQ ligand yield THQ, regenerates the CAS and restarts the catalytic cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Topsøe H, Clausen BS, Massoth FE (1996) Hydrotreating catalysis. Springer, Berlin

    Google Scholar 

  2. Sánchez-Delgado RA (2000) In: James BR, van Leeuwen PWNM (eds) Organometallic modelling of the hydrodesulfurization and hydrodenitrogenation reactions. Kluwer, Dordrecht

    Google Scholar 

  3. Fish RH, Michaels JN, Moore RS, Heinemann H (1990) J Catal 123:74

    Article  CAS  Google Scholar 

  4. Fish RH, Tan JL, Thormodsen AD (1984) J Org Chem 49:4500

    Article  CAS  Google Scholar 

  5. Fish RH, Kim HS, Babin JE, Adams RD (1988) Organometallics 7:2250

    Article  CAS  Google Scholar 

  6. Baralt E, Smith SJ, Hurwitz J, Horváth IT, Fish RH (1992) J Am Chem Soc 114:5187

    Article  CAS  Google Scholar 

  7. Sánchez-Delgado RA, González E (1989) Polyhedron 8:1431

    Article  Google Scholar 

  8. Sánchez-Delgado RA, Rondón D, Andriollo A, Herrera V, Martín G, Chaudret B (1993) Organometallics 12:4291

    Article  Google Scholar 

  9. Chin CS, Park Y, Lee B (1995) Catal Lett 31:239

    Article  CAS  Google Scholar 

  10. Rosales M, Alvarado Y, Boves M, Rubio R, Sánchez-Delgado R, Soscún H (1995) Transition Met Chem 20:246

    CAS  Google Scholar 

  11. Rosales M, Castillo J, González A, González L, Molina K, Navarro J, Pacheco I (2004) Transition Met Chem 29:221

    Article  CAS  Google Scholar 

  12. Alvarado Y, Busolo M, López-Linares F (1999) J Mol Catal 142:163

    Article  CAS  Google Scholar 

  13. Rosales M, Vallejo R, Soto JJ, Chacón G, González A, González B (2006) Catal Lett 106:101

    Article  CAS  Google Scholar 

  14. Rosales M, Vallejo R, Bastidas LJ, González B, González A (2007) React Kinet Catal Lett 92:99

    Article  CAS  Google Scholar 

  15. Borowski AF, Sabo-Etienne S, Donnadieu B, Chaudret B (2003) Organometallics 22:1630

    Article  CAS  Google Scholar 

  16. Rosales M, Vallejo R, Soto JJ, Bastidas LJ, Molina K, Baricelli P (2010) Catal Lett 134:56

    Article  CAS  Google Scholar 

  17. Herde JL, Lambert JC, Senoff CV (1974) Inorg Synth 15:18

    Article  CAS  Google Scholar 

  18. Varshavskii YS, Cherkasova TG (1967) Russ J Inorg Chem (English Transl) 12:899

    Google Scholar 

  19. Casado J, López-Quintela MA, Lorenzo-Barral FM (1986) J Chem Ed 63:450

    Article  CAS  Google Scholar 

  20. C L Young (ed) (1981) Solubility data series, vol 5/6, 420. Pergamon, Oxford, p 176

  21. Crabtree RH, Anton DR (1983) Organometallics 2:855

    Article  Google Scholar 

  22. James BR, Mahajan D (1979) Can J Chem 57:180

    Article  CAS  Google Scholar 

  23. Rosales M, González A, González B, Moratinos C, Pérez H, Urdaneta J, Sánchez-Delgado R (2005) J Organomet Chem 690:3095

    Article  CAS  Google Scholar 

  24. Kiss G (2001) Chem Rev 101:3435

    Article  CAS  Google Scholar 

  25. S. Yoshida, Y. Ohomori, Y. Watanabe (1988) J Chem Soc Dalton Trans 895

  26. Allen K, Bruck M, Gray S, Kingsborough R, Smith D, Weller K, Wigley D (1995) Polyhedron 14:3315

    Article  CAS  Google Scholar 

  27. Rosales M, Boves M, Soscún H, Ruette F (1998) J Mol Struct (Theochem) 433:319.H

    Article  Google Scholar 

  28. Stark GA, Arif AM, Gladysz JA (1994) Organometallics 13:4523

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial supports from Consejo de Desarrollo Científico y Humanístico of the Universidad del Zulia (CONDES-L.U.Z.) for Project CONDES-0040-2009 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merlín Rosales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosales, M., Bastidas, L.J., González, B. et al. Kinetics and Mechanisms of Homogeneous Catalytic Reactions. Part 11. Regioselective Hydrogenation of Quinoline Catalyzed by Rhodium Systems Containing 1,2-Bis(diphenylphosphino)ethane. Catal Lett 141, 1305–1310 (2011). https://doi.org/10.1007/s10562-011-0641-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0641-z

Keywords

Navigation