Skip to main content

Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt

Abstract

We estimate the activity of the oxygen reduction reaction on platinum nanoparticles of sizes of practical importance. The proposed model explicitly accounts for surface irregularities and their effect on the activity of neighboring sites. The model reproduces the experimentally observed trends in both the specific and mass activities for particle sizes in the range between 2 and 30 nm. The mass activity is calculated to be maximized for particles of a diameter between 2 and 4 nm. Our study demonstrates how an atomic-scale description of the surface microstructure is a key component in understanding particle size effects on the activity of catalytic nanoparticles.

Graphical Abstract

 

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Gasteiger H, Kocha S, Sompalli B, Wagner F (2005) Appl Catal B Environ 56:9

    Article  CAS  Google Scholar 

  2. Gasteiger HA, Marković NM (2009) Science 324:48

    Article  CAS  Google Scholar 

  3. Yano H, Inukai J, Uchida H, Watanabe M, Babu P, Kobayashi T, Chung J, Oldfield E, Wieckowski A (2006) Phys Chem Chem Phys 8:4932

    Article  CAS  Google Scholar 

  4. Mukerjee S, McBreen J (1998) J Electroanal Chem 448:163

    Article  CAS  Google Scholar 

  5. Mayrhofer K, Blizanac B, Arenz M, Stamenkovic V, Ross P, Markovic N (2005) J Phys Chem B 109:14433

    Article  CAS  Google Scholar 

  6. Dahl S, Logadottir A, Egeberg R, Larsen J, Chorkendorff I, Törnqvist E, Nørskov J (1999) Phys Rev Lett 83:1814

    Article  Google Scholar 

  7. Kuzume A, Herrero E, Feliu JM (2007) J Electroanal Chem 599:333

    Article  CAS  Google Scholar 

  8. Nørskov JK, Bligaard T, Hvolbaek B, Abild-Pedersen F, Chorkendorff I, Christensen CH (2008) Chem Soc Rev 37:2163

    Article  Google Scholar 

  9. Zambelli T, Wintterlin J, Trost J, Ertl G (1996) Science 273:1688

    Article  CAS  Google Scholar 

  10. Tian N, Zhou Z, Sun S (2008) J Phys Chem C 112:19801

    Article  CAS  Google Scholar 

  11. Vitos L, Ruban A, Skriver H, Kollár J (1998) Surf Sci 411:186

    Article  CAS  Google Scholar 

  12. Greeley J (2010) Electrochim Acta 55:5545

    Article  CAS  Google Scholar 

  13. Arenz M, Mayrhofer K, Stamenkovic V, Blizanac B, Tomoyuki T, Ross P, Markovic N (2005) J Am Chem Soc 127:6819

    Article  CAS  Google Scholar 

  14. Gontard L, Chang L, Hetherington C, Kirkland A, Ozkaya D, Dunin-Borkowski R (2007) Angew Chem Int Edit 46:3683

    Article  CAS  Google Scholar 

  15. Henry CR (1998) Surf Sci Rep 31:231

    Article  CAS  Google Scholar 

  16. Greeley J, Rossmeisl J, Hellman A, Nørskov J (2007) Z Phys Chem 221:1209

    CAS  Google Scholar 

  17. Hammer B, Nørskov J (2000) Adv Catal 45:71

    Article  CAS  Google Scholar 

  18. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886

    Article  Google Scholar 

  19. Enkovaara J, Rostgaard C, Mortensen J, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen H, Kristoffersen H, Kuisma M, Larsen A, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses P, Ojanen J, Olsen T, Petzold V, Romero N, Stausholm-Møller J, Strange M, Tritsaris G, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen G, Nieminen R, Nørskov J, Puska M, Rantala T, Schiøtz J, Thygesen K, Jacobsen K (2010) J Phys Condens Matter 22:253202

    Article  CAS  Google Scholar 

  20. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  21. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413

    Article  Google Scholar 

  22. Tripković V, Skúlason E, Siahrostami S, Nørskov JK, Rossmeisl J (2010) Electrochim Acta 55:7975

    Article  Google Scholar 

  23. Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson LGM, Nilsson A (2002) Phys Rev Lett 89:276102

    Article  CAS  Google Scholar 

  24. Lee SW, Chen S, Suntivich J, Sasaki K, Adzic RR, Shao-Horn Y (2010) J Phys Chem Lett 1:1316

    Article  CAS  Google Scholar 

  25. Nilekar AU, Mavrikakis M (2008) Surf Sci 602:89

    Article  Google Scholar 

  26. Shao-Horn Y, Sheng S, Chen S, Ferreira P, Holby E, Morgan D (2007) Top Catal 46:285

    Article  CAS  Google Scholar 

  27. Van Hardeveld R, Hartog F (1969) Surf Sci 15:189

    Article  Google Scholar 

Download references

Acknowledgments

CAMD is funded by the Lundbeck Foundation. This work was supported by the Danish Center for Scientific Computing. Work at the Center for Nanoscale Materials at Argonne was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Tritsaris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 286 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tritsaris, G.A., Greeley, J., Rossmeisl, J. et al. Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt. Catal Lett 141, 909–913 (2011). https://doi.org/10.1007/s10562-011-0637-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0637-8

Keywords

  • Electrocatalysis
  • Nanoparticles
  • DFT
  • Particle size effect
  • Oxygen electroreduction
  • Platinum