Skip to main content
Log in

Epoxidation of Ethylene by Silver Oxide (Ag2O) Cluster: A Density Functional Theory Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations were employed to study epoxidation of ethylene on a [Ag14O9] cluster model representing silver oxide (001) surface. Theoretical results obtained in this study showed that formation paths of acetaldehyde and vinyl alcohol have higher activation barriers than that of ethylene oxide formation path on silver oxide (35 and 35 vs. 20 kcal/mol). Formation of the ethylene oxometallocycle intermediate is found to have a low probability on Ag2O(001) surface. The essential reason for this may be lower basicity of surface oxygen atom on silver oxide surface and the absence of a surface vacancy position to activate ethylene. Adsorbed EO is formed on Ag2O surface cluster without an activation barrier. The activation barriers of the rate-limiting steps for the production of EO mechanisms (via ethyleneoxy and non-activated paths, 20 vs. 14 kcal/mol) are in relatively good agreement with the experimental activation energy values (14, 17 and 22 kcal/mol) reported for EO formation on silver catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Verykios XEFP, Stein R, Coughlin W (1980) Catal Rev Sci Eng 22:197

    Article  CAS  Google Scholar 

  2. Sachtler WM, Backx HC, van Santen RA (1981) Catal Rev Sci Eng 23:127

    Article  CAS  Google Scholar 

  3. van Santen RA, Kuipers HPCE (1987) Adv Catal 35:265

    Article  Google Scholar 

  4. Grant RB, Lambert RM (1985) J Catal 92:364

    Article  CAS  Google Scholar 

  5. Akimoto MK, Ichikawa K, Echigova E (1982) J Catal 76:333

    Article  CAS  Google Scholar 

  6. Kanoh H, Nishimura T, Ayame A (1979) J Catal 57:372

    Article  CAS  Google Scholar 

  7. Larrabe AD, Kuczkowski RL (1978) J Catal 52:72

    Article  Google Scholar 

  8. Linic S, Barteau M (2002) J Am Chem Soc 124:310

    Article  CAS  Google Scholar 

  9. Mavrikakis M, Doren DJ, Barteau MA (1998) J Phys Chem B 102:394

    Article  CAS  Google Scholar 

  10. Medlin JW, Mavrikakis M, Barteau MA (1999) J Phys Chem B 103:11169

    Article  CAS  Google Scholar 

  11. Linic S, Barteau MA (2003) J Am Chem Soc 125:4034

    Article  CAS  Google Scholar 

  12. van Santen RA, de Groot CPM (1989) J Catal 98:530

    Google Scholar 

  13. van den Hoek PJ, Baerends EJ, van Santen RA (1989) J Phys Chem 93:6469

    Article  Google Scholar 

  14. Ozbek MO, Onal I, van Santen RA (2011) ChemCatChem 3:150

    Article  Google Scholar 

  15. Bcquet ML, Michaelides A, Loffreda D, Sautet P, Alavi A, King DA (2003) J Am Chem Soc 125:5620

    Article  Google Scholar 

  16. Bocquet ML, Sautet P, Cerda J, Carlisle CI, Webb MJ, King DA (2003) J Am Chem Soc 125:3119

    Article  CAS  Google Scholar 

  17. Bocquet ML, Loffreda D (2005) J Am Chem Soc 127:17207

    Article  CAS  Google Scholar 

  18. Gao W, Zhao M, Jiang Q (2007) J Phys Chem C 111:4042

    Article  CAS  Google Scholar 

  19. Roithova J, Schröder D (2007) J Am Chem Soc 129:15311

    Article  CAS  Google Scholar 

  20. Michaelides A, Reuter K, Scheffler M (2005) J Vac Sci Tech 23:1487

    CAS  Google Scholar 

  21. Schmid M, Reicho A, Stierle A, Costina I, Klikovits J, Kostelnik P, Dubay O, Kresse G, Gustafson J, Lundgren E, Andersen JN, Dosch H, Varga P (2006) Phys Rev Lett 96:146102

    Article  CAS  Google Scholar 

  22. Carlisle CI, King DA, Bocquet ML, Cerda J, Sautet P (2000) Phys Rev Lett 84:3899

    Article  CAS  Google Scholar 

  23. Michaelides A, Bocquet ML, Sautet P, Alavi A, King DA (2003) Chem Phys Lett 367:344

    Article  CAS  Google Scholar 

  24. Bukhtiyarov VI, Havecker M, Kaichev VV, Gericke AK, Mayer RW, Schlögl R (2003) Phys Rev B 67:235422

    Article  Google Scholar 

  25. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann, RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Gaussian Inc., Wallingford, CT

  27. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  28. Becke AD, Roussel MR (1989) Phys Rev A 39:3761

    Article  CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  30. Baker J, Muir M, Andzelm J, Scheiner A (1996) ACS Symp Ser 629:342

    Article  CAS  Google Scholar 

  31. Karakaya I, Thompson WT (1992) J Phase Equilibria 13:137

    Article  CAS  Google Scholar 

  32. Sanz-Navarro SV, Astrand PO, Chen D, Rønning M, van Duin ACT, Jacop T, Goddard WA III (2008) J Phys Chem A 112:1392

    Article  CAS  Google Scholar 

  33. Mulliken RS (1955) J Chem Phys 23:1833

    Article  CAS  Google Scholar 

  34. Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO, version 3.1, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI

  35. Fellah MF (2011) J Phys Chem C 115:1940

    Article  CAS  Google Scholar 

  36. Fellah MF, van Santen RA, Onal I (2009) J Phys Chem C 113:15307

    Article  CAS  Google Scholar 

  37. Fellah MF, Onal I (2010) J Phys Chem C 114:3042

    Article  CAS  Google Scholar 

  38. Fellah MF, Onal I, van Santen RA (2010) J Phys Chem C 114:12580

    Article  CAS  Google Scholar 

  39. Torres D, Lopez N, Illas F, Lambert RM (2007) Angew Chem Int Ed 46:2055

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by TÜBİTAK through TR-Grid e-Infrastructure Project. TR-Grid systems are hosted by TÜBİTAK ULAKBİM and Middle East Technical University. Visit http://www.grid.org.tr for more information. This study was also supported by CENG HPC System of METU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehmet Ferdi Fellah, Rutger A. van Santen or Isik Onal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fellah, M.F., van Santen, R.A. & Onal, I. Epoxidation of Ethylene by Silver Oxide (Ag2O) Cluster: A Density Functional Theory Study. Catal Lett 141, 762–771 (2011). https://doi.org/10.1007/s10562-011-0614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0614-2

Keywords

Navigation