Skip to main content
Log in

Microemulsion-Aided Synthesis of Nanosized Perovskite-Type SrCoOx Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Nanostructured perovskite-type SrCoOx catalysts were prepared using a w/o-microemulsion as a soft template. Conventional co-precipitation and citric acid sol–gel were used as reference methods with regard to surface and bulk physico-chemical properties as well as catalytic performance in methane oxidation. The solids were characterised by XRD, SEM, TEM, EDX, N2-physisorption, TG-DTA-MS, ICP-OES, and H2-TPR techniques. The phase transformation temperature of the microemulsion-templated perovskites is by 150 K lower than that in the conventionally prepared ones. Therefore, this material is characterized by smaller crystallite sizes and higher surface areas. As result, it shows a higher activity in oxidative coupling of methane as compared to sol–gel and co-precipitated catalysts. The properties of the catalysts are weakly influenced by changing the specific synthesis parameters of the microemulsions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mirkin CA (2005) Small 1:14

    Article  CAS  Google Scholar 

  2. Campelo JM, Luna D, Luque R, Marinas JM, Romero A (2009) ChemSusChem 2:18

    Article  CAS  Google Scholar 

  3. Eriksson S, Nylén U, Rojas S, Boutonnet M (2004) Appl Catal A 265:207

    Article  CAS  Google Scholar 

  4. Tejuca LG, Fierro JLG (eds) (1992) Properties and applications of perovskite-type oxides. New York. ISBN 10: 0824787862, 13: 9780824787868

  5. Tanaka H, Tan I, Uenishi M, Kimura M, Dohmae K (2001) Top Catal 16–17:63

    Article  Google Scholar 

  6. Nishihata Y, Mizuki J, Akao T et al (2002) Nature 418:164

    Article  CAS  Google Scholar 

  7. Kießling D, Schneider R, Kraak P, Haftendorn M, Wendt G (1998) Appl Catal B 19:143

    Article  Google Scholar 

  8. O’Connell M, Norman AK, Hüttermann CF, Morris MA (1999) Catal Today 47:123

    Article  Google Scholar 

  9. Pena MA, Fierro JLG (2001) Chem Rev 101:1981

    Article  CAS  Google Scholar 

  10. Stephan K, Hackenberger M, Kießling D, Wendt G (2004) Chem Eng Technol 27:687

    Article  CAS  Google Scholar 

  11. Gaoke Z, Ying L, Xia Y et al (2006) Mater Chem Phys 99:88

    Article  Google Scholar 

  12. Nemudry A, Rudolf P, Schollhorn R (1996) Chem Mater 8:2232

    Article  CAS  Google Scholar 

  13. Lee K, Pickett WE (2006) Phys Rev B 73:174428

    Article  Google Scholar 

  14. Nagai T, Ito W, Sakon T (2007) Solid State Ion 177:3433

    Article  CAS  Google Scholar 

  15. Zeng P, Ran R, Chen Z et al (2008) J Alloy Compd 455:465

    Article  CAS  Google Scholar 

  16. Kharton VV, Yaremchenko AA, Kovalevsky AV et al (1999) J Membr Sci 163:307

    Article  CAS  Google Scholar 

  17. Chen Z, Ling T, Lee M (1997) React Kinet Catal Lett 62:185

    Article  CAS  Google Scholar 

  18. Omata K, Yamazaki O, Tomita K, Fujimoto K (1994) J Chem Soc Chem Commun 1647. doi:10.1039/C39940001647

  19. Pyatnitsky Y, Ilchenko N, Dolgikh L, Pavlenko N (2000) Top Catal 11–12:229

    Article  Google Scholar 

  20. Ge L, Zhu Z, Shao Z, Wang S, Liu S (2009) Ceram Int 35:3201

    Article  CAS  Google Scholar 

  21. Schmidt J, Guesdon C, Schomäcker R (1999) J Nanopart Res 1:267

    Article  CAS  Google Scholar 

  22. Pecchi G, Reyes P, Zamora R et al (2008) Catal Today 133–135:420

    Article  Google Scholar 

  23. López-Trosell A, Schomäcker R (2006) Mater Res Bull 41:333

    Article  Google Scholar 

  24. Trofimenko NE, Paulsen J, Ullmann H, Müller R (1997) Solid State Ion 100:183

    Article  CAS  Google Scholar 

  25. Le Toquin R, Paulus W, Cousson A, Prestipino C, Lamberti C (2006) J Am Chem Soc 128:13161

    Article  CAS  Google Scholar 

  26. Knaepen E, Mullens J, Yperman J, Van Poucke LC (1996) Thermochim Acta 284:213

    Article  CAS  Google Scholar 

  27. Ingier-Stocka E, Rycerz L (1999) J Therm Anal Calorim 56:547

    Article  CAS  Google Scholar 

  28. Al-Newaiser F, Al-Thabaiti S, Al-Youbi A, Obaid A, Gabal M (2007) Chem Pap 61:370

    Article  CAS  Google Scholar 

  29. Majumdar S, Sharma I, Bidaye A, Suri A (2008) Thermochim Acta 473:45

    Article  CAS  Google Scholar 

  30. Schinkel G, Garrn I, Frank B et al (2008) Mater Chem Phys 111:570. doi:10.1016/j.matchemphys.2008.05.032

    Article  CAS  Google Scholar 

  31. Ilchenko N, Pavlenko N, Raevskaya L, Bostan A (2000) Theor Exp Chem 36:48

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the German Research Foundation (DFG, EXC 314). We thank Dr. D. Berger and F. Galbert (ZELMI, TU Berlin), R. Marschner (TU Berlin), G. Lorenz, and Dr. B. Frank (FHI, Berlin) for their assistance on experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Schomäcker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 315 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langfeld, K., Kondratenko, E.V., Görke, O. et al. Microemulsion-Aided Synthesis of Nanosized Perovskite-Type SrCoOx Catalysts. Catal Lett 141, 772–778 (2011). https://doi.org/10.1007/s10562-011-0607-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0607-1

Keywords

Navigation