Skip to main content
Log in

Scanning Tunneling Microscopy Study of H6+x P2Mo18−x V x O62 (x = 0–3) Wells–Dawson Heteropolyacid Catalysts: Correlation of NDR Peak Voltage with Reduction Potential and Oxidation Catalysis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Scanning tunneling microscopy (STM) and tunneling spectroscopy studies were carried out to examine the redox properties of vanadium-containing H6+x P2Mo18−x V x O62 (x = 0, 1, 2, 3) Wells–Dawson heteropolyacid (HPA) catalysts. The HPAs formed two-dimensional well-ordered monolayer arrays on a graphite surface and exhibited a distinctive current–voltage behavior called negative differential resistance (NDR). The NDR peak voltages of H6+x P2Mo18−x V x O62 HPAs were correlated with reduction potentials determined by temperature-programmed reduction and with catalytic activity for oxidative dehydrogenation of isobutyraldehyde to methacrolein. The NDR peak voltage of H6+x P2Mo18−x V x O62 appeared at less negative voltage with increasing reduction potential and oxidation catalysis.

Graphical Abstract

Negative differential resistance (NDR) peak voltage of H6+x P2Mo18−x V x O62 determined by scanning tunneling microscopy appeared at less negative voltage with increasing reduction potential and with increasing oxidation catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eigler DM, Schwerizer EK (1990) Nature 344:524–526

    Article  CAS  Google Scholar 

  2. Lauritsen JV, Vang RT, Besenbacher F (2006) Catal Today 111:34–43

    Article  CAS  Google Scholar 

  3. Fujii S, Kurokawa S, Murase K, Lee KH, Sakai A, Sugimura H (2007) Electrochim Acta 52:4436–4442

    Article  CAS  Google Scholar 

  4. Prauzner-Bechcicki JS, Godlewski S, Tekiel A, Cyganik P, Budzioch J, Szymonski M (2009) J Phys Chem C 113:9309–9315

    Article  CAS  Google Scholar 

  5. Takimoto K, Kuroda R, Shido S, Yasuda S, Matsuda H, Eguchi K, Nakagiri T (1997) J Vac Sci Technol B 15:1429–1431

    Article  CAS  Google Scholar 

  6. Morf P, Ballav N, Putero M, Wrochem F, Wessels JM, Jung TA (2010) J Phys Chem Lett 1:813–816

    Article  CAS  Google Scholar 

  7. Tomimoto H, Sumii R, Shirota N, Yagi N, Taniguchi M, Sekitani T, Tanaka K (2000) J Vac Sci Technol B 18:2335–2338

    Article  CAS  Google Scholar 

  8. Johansson MKJ, Gray SM, Johansson LSO (1996) J Vac Sci Technol B 14:1015–1018

    Article  CAS  Google Scholar 

  9. Wiesendanger R, Güntherodt HJ (1993) Scanning tunneling microscopy, vol III. Springer, New York

    Google Scholar 

  10. Watson BA, Barteau MA, Haggerty L, Lenhoff AM, Weber RS (1992) Langmuir 8:1145–1148

    Article  CAS  Google Scholar 

  11. Song IK, Barteau MA (2002) Korean J Chem Eng 19:567–573

    Article  CAS  Google Scholar 

  12. Song IK, Barteau MA (2002) J Mol Catal A Chem 182–183:185–193

    Article  Google Scholar 

  13. Kaba MS, Song IK, Barteau MA (2002) J Phys Chem B 106:2337–2342

    Article  CAS  Google Scholar 

  14. Mizuno N, Misono M (1998) Chem Rev 98:199–218

    Article  CAS  Google Scholar 

  15. Kozhevnikov IV (1998) Chem Rev 98:171–198

    Article  CAS  Google Scholar 

  16. Kozhevnikov IV (2009) J Mol Catal A Chem 305:104–111

    Article  CAS  Google Scholar 

  17. Timofeeva MN (2003) Appl Catal A Gen 256:19–35

    Article  CAS  Google Scholar 

  18. Youn MH, Park DR, Jung JC, Kim H, Barteau MA, Song IK (2007) Korean J Chem Eng 24:51–54

    Article  CAS  Google Scholar 

  19. Al-Zahrani SM, Jibril BY, Abasaeed AE (2001) J Mol Catal A Chem 175:259–265

    Article  CAS  Google Scholar 

  20. Nomiya K, Yagishita K, Nemoto Y, Kamataki T (1997) J Mol Catal A Chem 126:43–53

    Article  CAS  Google Scholar 

  21. Li G, Ding Y, Wang J, Wang X, Suo J (2007) J Mol Catal A Chem 262:67–76

    Article  CAS  Google Scholar 

  22. Briand LE, Baronetti GT, Thomas HJ (2003) Appl Catal A Gen 256:37–50

    Article  CAS  Google Scholar 

  23. Park DR, Kim H, Jung JC, Lee SH, Song IK (2008) Catal Commun 9:293–298

    Article  CAS  Google Scholar 

  24. Baronetti G, Briand L, Sedran U, Thomas H (1998) Appl Catal A Gen 172:265–272

    Article  CAS  Google Scholar 

  25. Dawson B (1953) Acta Cryst 6:113–126

    Article  CAS  Google Scholar 

  26. Lindsey SM, Sankey OF, Li Y, Herbst C, Ruppercht A (1990) J Phys Chem 94:4655–4656

    Article  Google Scholar 

  27. Tsuchiya M, Sakaki H (1986) Appl Phys Lett 49:88–90

    Article  CAS  Google Scholar 

  28. Capasso F (1990) Physics of quantum electron device. Springer-Verlag, New York

    Google Scholar 

  29. Mizutani W, Shigeno M, Ono M, Kajimura K (1990) Appl Phys Lett 56:1974–1976

    Article  CAS  Google Scholar 

  30. Katamura K, Nakamura T, Sakata K, Misono M, Yoneda Y (1981) Chem Lett 89–92

  31. Hodnett BK, Moffat JB (1985) J Catal 91:93–103

    Article  CAS  Google Scholar 

  32. Weber RS (1994) J Phys Chem 98:2999–3005

    Article  CAS  Google Scholar 

  33. Mossoba MM, O’Connor CJ, Pope MT, Sinn E, Hervé G, Tézé A (1980) J Am Chem Soc 102:6864–6866

    Article  CAS  Google Scholar 

  34. Grobis M, Wachowiak A, Ymachika R, Crommie MF (2005) Appl Phys Lett 86:204102

    Article  Google Scholar 

  35. Nathan NP, Greene ME, Basu R, Baluch AS, Hersam MC (2004) Nano Lett 4:55–59

    Article  Google Scholar 

  36. Konishi Y, Sakata K, Misono M, Yoneda Y (1982) J Catal 77:169–179

    Article  CAS  Google Scholar 

  37. Misono M (1994) Polyoxometalates: from platonic solids to anti-retroviral activity. Kluwer, Dordrecht

Download references

Acknowledgements

This work was supported by Mid-career Researcher Program of National Research Foundation (NRF) grant funded by the Korea government (MEST) (No. 2010-0000301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kyu Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J.H., Park, D.R., Park, S. et al. Scanning Tunneling Microscopy Study of H6+x P2Mo18−x V x O62 (x = 0–3) Wells–Dawson Heteropolyacid Catalysts: Correlation of NDR Peak Voltage with Reduction Potential and Oxidation Catalysis. Catal Lett 141, 826–832 (2011). https://doi.org/10.1007/s10562-011-0596-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0596-0

Keywords

Navigation