Skip to main content
Log in

Reduction of Sulfoxides to Sulfides in the Presence of Copper Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Copper complexes catalyze the reduction of aliphatic and aromatic sulfoxides in the presence of silanes as reducing reagent. The influence of different reaction parameters on the catalytic activity is investigated in detail. The scope and limitations of the described catalyst is demonstrated in the reduction of various sulfoxides. In most cases, high conversion and excellent chemoselectivity are obtained.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hille R, Reètey J, Bartlewski-Hof U, Reichenbecher W, Schink B (1999) FEMS Microbiol Rev 22:489–501

    Article  Google Scholar 

  2. Hille R (1996) Chem Rev 96:2757–2816

    Article  CAS  Google Scholar 

  3. Kisker C, Schindelin H, Rees DC (1997) Annu Rev Biochem 66:233–267

    Article  CAS  Google Scholar 

  4. Enemark JH, Cooney JJA, Wang J-J, Holm RH (2004) Chem Rev 104:1175–1200

    Article  CAS  Google Scholar 

  5. McGarrigle EM, Myers EL, Illa O, Shaw MA, Riches SL, Aggarwal VK (2007) Chem Rev 107:5841–5883

    Article  CAS  Google Scholar 

  6. Rickard D, Luther GW III (2007) Chem Rev 107:514–562

    Article  CAS  Google Scholar 

  7. Nicolas E, Vilaseca M, Giralt E (1995) Tetrahedron 51:5701–5710

    Article  CAS  Google Scholar 

  8. Nicolau KC, Kuombis AE, Synder SA, Simonsen KB (2000) Angew Chem 112:2629–2633

    Article  Google Scholar 

  9. Nicolau KC, Kuombis AE, Synder SA, Simonsen KB (2000) Angew Chem Int Ed 39:2529–2533

    Article  Google Scholar 

  10. Fernandes AC, Fernandes JA, Romão CC, Veiros LF, Calhorda MJ (2010) Organometallics. doi:10.1021/om100450a

  11. Reis PM, Costa PJ, Romão CC, Fernandes JA, Calhorda MJ, Royo B (2008) Dalton Trans 1727–1733

  12. Bahrami K, Khodaei MM, Karimi A (2008) Synthesis 2543–2546

  13. Khurana JM, Sharma VS, Chacko A (2007) Tetrahedron 63:966–969

    Article  CAS  Google Scholar 

  14. Yoo BW, Park MC, Song MS (2007) Synth Commun 37:4079–4083

    Article  CAS  Google Scholar 

  15. Yoo BW, Song MS, Park MC (2007) Bull Korean Chem Soc 28:171–172

    Article  CAS  Google Scholar 

  16. Yoo BW, Song MS, Park MC (2007) Synth Commun 37:3089–3093

    Article  CAS  Google Scholar 

  17. Pandey LK, Pathak U, Rao AN (2007) Synth Commun 37:4105–4109

    Article  CAS  Google Scholar 

  18. Bahrami K, Khodaei MM, Khedri M (2007) Chem Lett 36:1324–1325

    Article  CAS  Google Scholar 

  19. Fernandes AC, Romão CC (2007) Tetrahedron Lett 48:9176–9179

    Article  CAS  Google Scholar 

  20. Fernandes AC, Romão CC (2006) Tetrahedron 62:9650–9654

    Article  CAS  Google Scholar 

  21. Roy CD, Brown HC (2006) J Chem Res 10:642–644

    Article  Google Scholar 

  22. Raju BR, Devi G, Nongpluh YS, Saikia AK (2005) Synlett 358–360

  23. Espenson JH (2005) Coord Chem Rev 249:329–341

    Article  CAS  Google Scholar 

  24. Sanz R, Escribano J, Fernández Y, Aguado R, Pedrosa MR, Arnáiz FJ (2004) Synthesis 1629–1632

  25. Harrison DJ, Tam NC, Vogels CM, Langler RF, Baker RT, Decken A, Westcott SA (2004) Tetrahedron Lett 45:8493–8496

    Article  CAS  Google Scholar 

  26. Koshino N, Espenson JH (2003) Inorg Chem 42:5735–5742

    Article  CAS  Google Scholar 

  27. Yoo BW, Choi KH, Kim DY, Choi KI, Kim JH (2003) Synth Commun 33:53–57

    Article  CAS  Google Scholar 

  28. Arias J, Newlands CR, Abu-Omar MM (2001) Inorg Chem 40:2185–2192

    Article  CAS  Google Scholar 

  29. Abu-Omar MM, Khan SI (1998) Inorg Chem 37:4979–4985

    Article  CAS  Google Scholar 

  30. Arterburn JB, Perry MC (1996) Tetrahedron Lett 37:7941–7944

    Article  CAS  Google Scholar 

  31. Abu-Omar MM, Appelman EH, Espenson JH (1996) Inorg Chem 35:7751–7757

    Article  CAS  Google Scholar 

  32. Kukuskin VY (1995) Coord Chem Rev 139:375–407

    Article  Google Scholar 

  33. Zhu Z, Espenson JH (1995) J Mol Catal A 103:87–94

    Article  CAS  Google Scholar 

  34. Kukuskin VY (1990) Russ Chem Rev 59:844–852

    Article  Google Scholar 

  35. Madesclaire M (1988) Tetrahedron 44:6537–6551

    Article  CAS  Google Scholar 

  36. Bryan JC, Stenkamp RE, Tulip TH, Mayer JM (1987) Inorg Chem 26:2283–2288

    Article  CAS  Google Scholar 

  37. Cha JS, Kim JE, Kim JD (1985) Tetrahedron Lett 26:6453–6456

    Article  CAS  Google Scholar 

  38. Brown HC, Ravindran N (1973) Synthesis 42–43

  39. Guidon Y, Atkinson JG, Morton HE (1984) J Org Chem 49:4538–4540

    Article  Google Scholar 

  40. Sousa SCA, Fernandes AC (2009) Tetrahedron Lett 50:6872–6876

    Article  CAS  Google Scholar 

  41. Anastas PT, Kirchhoff MM (2002) Acc Chem Res 35:686–694

    Article  CAS  Google Scholar 

  42. Anastas PT, Kirchhoff MM, Williamson TC (2001) Appl Catal A 221:3–13

    Article  CAS  Google Scholar 

  43. Anastas PT (2009) ChemSusChem 2:391–392

    Article  CAS  Google Scholar 

  44. Enthaler S, Junge K, Beller M (2008) Angew Chem 120:2531–2535

    Article  Google Scholar 

  45. Enthaler S, Junge K, Beller M (2008) Angew Chem Int Ed 47:3317–3321

    Article  CAS  Google Scholar 

  46. Brunner H, Mehling W (1984) J Organomet Chem 275:c17–c21

    Article  CAS  Google Scholar 

  47. Rendler S, Oestreich M (2007) Angew Chem Int Ed 46:498–504

    Article  CAS  Google Scholar 

  48. Deutsch C, Krause N, Lipshutz BH (2008) Chem Rev 108:2916–2927

    Article  CAS  Google Scholar 

  49. Diez-Gonzalez S, Nolan SP (2008) Acc Chem Res 41:349–358

    Article  CAS  Google Scholar 

  50. Lee C-T, Lipshutz BH (2008) Org Lett 10:4187–4190

    Article  CAS  Google Scholar 

  51. Díez-González S, Stevens ED, Scott NM, Petersen JL, Nolan SP (2008) Chem Eur J 14:158–168

    Article  Google Scholar 

  52. Kassube JK, Wadepohl H, Gade LH (2009) Adv Synth Catal 351:607–616

    Article  CAS  Google Scholar 

  53. Zhang X-C, Wu Y, Yu F, Wu F-F, Wu J, Chan AS (2009) Chem Eur J 15:5888–5891

    Article  CAS  Google Scholar 

  54. Sharma U, Kumar P, Kumar N, Kumar V, Singh B (2010) Adv Synth Catal 352:1834–1840

    Article  CAS  Google Scholar 

  55. Fujihara T, Semba K, Terao J, Tsuij Y (2010) Angew Chem 122:1514–1518

    Google Scholar 

  56. Fujihara T, Semba K, Terao J, Tsuij Y (2010) Angew Chem Int Ed 49:1472–1476

    CAS  Google Scholar 

  57. Lie WJ, Qiu SX (2010) Adv Synth Catal 352:1119–1122

    Article  Google Scholar 

  58. Moser R, Boskovic ZV, Crowe CS, Lipshutz BH (2010) J Am Chem Soc 132:7852–7853

    Article  CAS  Google Scholar 

  59. Bahrami K, Khodaei MM, Khedri M (2007) Chem Lett 36:1324–1325

    Article  CAS  Google Scholar 

  60. Enthaler S (2011) Chem Cat Chem 3:666–670

    CAS  Google Scholar 

  61. Enthaler S (2011) Catal Sci Technol. doi:10.1039/c0cy00039f

  62. Krackl S, Company A, Enthaler S, Driess M (2011) ChemCatChem. doi:10.1002/cctc.201100007

  63. Itoh T, Mase T (2004) Org Lett 6:4587–4590

    Article  CAS  Google Scholar 

  64. Dichiarante V, Fagnoni M, Albini A (2006) Chem Commun 3001–3003

  65. Penner GH, Wasylishen RE (1989) Can J Chem 67:525–534

    Article  CAS  Google Scholar 

  66. Sanz R, Fernandez Y, Castroviejo MP, Perez A, Fananas FJ (2006) J Org Chem 71:6291–6294

    Article  CAS  Google Scholar 

  67. Guijarro D, Mancheno B, Yus M (1992) Tetrahedron 48:4593–4600

    Article  CAS  Google Scholar 

  68. Dyer JC, Evans SA, Slayton Jr (1991) Magn Reson Chem 29:286–288

    Article  CAS  Google Scholar 

  69. Ajiki K, Hirano M, Tanaka K (2005) Org Lett 7:4193–4195

    Article  CAS  Google Scholar 

  70. Barbarella G, Dembech P, Garbesi A, Fava A (1976) Org Magn Reson 8:108–114

    Article  CAS  Google Scholar 

  71. Gandhi T, Jagirdar BR (2005) Inorg Chem 44:1118–1124

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Cluster of Excellence “Unifying Concepts in Catalysis” (funded by the Deutsche Forschungsgemeinschaft and administered by the Technische Universität Berlin) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Enthaler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enthaler, S., Weidauer, M. Reduction of Sulfoxides to Sulfides in the Presence of Copper Catalysts. Catal Lett 141, 833–838 (2011). https://doi.org/10.1007/s10562-011-0590-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0590-6

Keywords

Navigation