Skip to main content

Advertisement

Log in

Steam Reforming of Glycerin Using Ni-based Catalysts Loaded on CaO–ZrO2 Solid Solution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Steam reforming of glycerin on Ni-loaded catalyst was performed using a ZrO2-based support material. The addition of CaO to ZrO2 improved the catalyst performance, and NiO/CaO–ZrO2 afforded glycerin conversion of 88.9% with an H2 yield of 75.3% at 600 °C. Carbon formation decreased from 4.2 to 2.0% with CaO-added catalyst. Solid solution was formed with the addition of CaO to ZrO2, and it exhibited basic characteristics. Further reduction of carbon formation during the reforming reaction was achieved by using a quaternary complex oxide catalyst NiO–CeO2/CaO–ZrO2, where glycerin conversion of 96.1% and a H2 yield of 83.7% were achieved with carbon formation of 0.7% at 600 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM, Luna D, Marinas JM, Romero AA (2008) Biofuels: a technological perspective. Energy Environ Sci 1(5):542–564. doi:10.1039/b807094f

    Article  CAS  Google Scholar 

  2. Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50(1):14–34. doi:10.1016/j.enconman.2008.09.001

    Article  CAS  Google Scholar 

  3. Bell BM, Briggs JR, Campbell RM, Chambers SM, Gaarenstroom PD, Hippler JG, Hook BD, Kearns K, Kenney JM, Kruper WJ, Schreck DJ, Theriault CN, Wolfe CP (2008) Glycerin as a renewable feedstock for epichlorohydrin production. The GTE process. Clean-Soil Air Water 36(8):657–661. doi:10.1002/clen.200800067

    Article  CAS  Google Scholar 

  4. Chaminand J, Djakovitch L, Gallezot P, Marion P, Pinel C, Rosier C (2004) Glycerol hydrogenolysis on heterogeneous catalysts. Green Chem 6(8):359–361. doi:10.1039/b407378a

    Article  CAS  Google Scholar 

  5. Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K (2006) Glycerol conversion in the aqueous solution under hydrogen over Ru/C plus an ion-exchange resin and its reaction mechanism. J Catal 240(2):213–221. doi:10.1016/j.jcat.2006.03.023

    Article  CAS  Google Scholar 

  6. Miyazawa T, Koso S, Kunimori K, Tomishige K (2007) Glycerol hydrogenolysis to 1,2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C. Appl Catal A Gen 329:30–35. doi:10.1016/j.apcata.2007.06.019

    Article  CAS  Google Scholar 

  7. Miyazawa T, Koso S, Kunimori K, Tomishige K (2007) Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin. Appl Catal A Gen 318:244–251. doi:10.1016/j.apcata.2006.11.006

    Article  CAS  Google Scholar 

  8. Zinoviev S, Muller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. Chemsuschem 3 (10):1106–1133. doi:10.1002/cssc.201000052

    Google Scholar 

  9. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967. doi:10.1038/nature01009

    Article  CAS  Google Scholar 

  10. Davda RR, Dumesic JA (2003) Catalytic reforming of oxygenated hydrocarbons for hydrogen with low levels of carbon monoxide. Angew Chem Int Edit 42(34):4068–4071. doi:10.1002/anie.200351664

    Article  CAS  Google Scholar 

  11. Hirai T, Ikenaga N, Miyake T, Suzuki T (2005) Production of hydrogen by steam reforming of glycerin on ruthenium catalyst. Energy Fuels 19(4):1761–1762. doi:10.1021/ef050121q

    Article  CAS  Google Scholar 

  12. Dauenhauer PJ, Salge JR, Schmidt LD (2006) Renewable hydrogen by autothermal steam reforming of volatile carbohydrates. J Catal 244(2):238–247. doi:10.1016/j.jcat.2006.09.011

    Article  CAS  Google Scholar 

  13. Soares RR, Simonetti DA, Dumesic JA (2006) Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. Angew Chem Int Edit 45(24):3982–3985. doi:10.1002/anie.200600212

    Article  CAS  Google Scholar 

  14. Simonetti DA, Kunkes EL, Dumesic JA (2007) Gas-phase conversion of glycerol to synthesis gas over carbon-supported platinum and platinum-rhenium catalysts. J Catal 247(2):298–306. doi:10.1016/j.jcat.2007.01.022

    Article  CAS  Google Scholar 

  15. Adhikari S, Fernando S, Haryanto A (2007) A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glycerin. Energy Fuels 21(4):2306–2310

    Article  CAS  Google Scholar 

  16. Adhikari S, Fernando SD, Haryanto A (2008) Hydrogen production from glycerin by steam reforming over nickel catalysts. Renew Energy 33(5):1097–1100. doi:10.1016/j.renene.2007.09.005

    Article  CAS  Google Scholar 

  17. Adhikari S, Fernando SD, To SDF, Bricka RM, Steele PH, Haryanto A (2008) Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts. Energy Fuels 22(2):1220–1226. doi:10.1021/ef700520f

    Article  CAS  Google Scholar 

  18. Zhang BC, Tang XL, Li Y, Xu YD, Shen WJ (2007) Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts. Int J Hydrogen Energy 32(13):2367–2373. doi:10.1016/j.ijhydene.2006.11.003

    Article  CAS  Google Scholar 

  19. Kunkes EL, Soares RR, Simonetti DA, Dumesic JA (2009) An integrated catalytic approach for the production of hydrogen by glycerol reforming coupled with water-gas shift. Appl Catal B Environ 90(3–4):693–698. doi:10.1016/j.apcatb.2009.04.032

    Article  CAS  Google Scholar 

  20. Slinn M, Kendall K, Mallon C, Andrews J (2008) Steam reforming of biodiesel by-product to make renewable hydrogen. Bioresour Tech 99(13):5851–5858. doi:10.1016/j.biortech.2007.10.003

    Article  CAS  Google Scholar 

  21. Srinivas D, Satyanarayana CVV, Potdar HS, Ratnasamy P (2003) Structural studies on NiO–CeO2–ZrO2 catalysts for steam reforming of ethanol. Appl Catal A Gen 246(2):323–334. doi:10.1016/s0926-860x(03)00085-1

    Article  CAS  Google Scholar 

  22. Vaidya PD, Rodrigues AE (2009) Glycerol reforming for hydrogen production: a review. Chemical Eng Tech 32(10):1463–1469. doi:10.1002/ceat.200900120

    Article  CAS  Google Scholar 

  23. Adhikari S, Fernando S, Haryanto A (2007) Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts. Catal Today 129(3–4):355–364

    Article  CAS  Google Scholar 

  24. Takeguchi T, Furukawa SN, Inoue M (2001) Hydrogen spillover from NiO to the large surface area CeO2–ZrO2 solid solutions and activity of the NiO/CeO2–ZrO2 catalysts for partial oxidation of methane. J Catal 202(1):14–24

    Article  CAS  Google Scholar 

  25. Takeguchi T, Furukawa SN, Inoue M, Eguchi K (2003) Autothermal reforming of methane over Ni catalysts supported over CaO–CeO2–ZrO2 solid solution. Appl Catal A Gen 240(1–2):223–233

    Article  CAS  Google Scholar 

  26. Bellido JDA, Assaf EM (2008) Nickel catalysts supported on ZrO2, Y2O3-stabilized ZrO2 and CaO-stabilized ZrO2 for the steam reforming of ethanol: Effect of the support and nickel load. J Power Sources 177(1):24–32. doi:10.1016/j.jpowsour.2007.11.006

    Article  CAS  Google Scholar 

  27. Biswas P, Kunzru D (2007) Steam reforming of ethanol on Ni–CeO2–ZrO2 catalysts: effect of doping with copper, cobalt and calcium. Catal Lett 118(1–2):36–49. doi:10.1007/s10562-007-9133-6

    Article  CAS  Google Scholar 

  28. Liu SG, Guan LX, Li JP, Zhao N, Wei W, Sun YH (2008) CO2 reforming of CH4 over stabilized mesoporous Ni–CaO–ZrO2 composites. Fuel 87(12):2477–2481. doi:10.1016/j.fuel.2008.02.009

    Article  CAS  Google Scholar 

  29. Bellido JDA, De Souza JE, M’Peko JC, Assaf EM (2009) Effect of adding CaO to ZrO2 support on nickel catalyst activity in dry reforming of methane. Appl Catal A Gen 358(2):215–223. doi:10.1016/j.apcata.2009.02.014

    Article  CAS  Google Scholar 

  30. Buffoni IN, Pompeo F, Santori GF, Nichio NN (2009) Nickel catalysts applied in steam reforming of glycerol for hydrogen production. Catal Commun 10(13):1656–1660. doi:10.1016/j.catcom.2009.05.003

    Article  CAS  Google Scholar 

  31. Damyanova S, Pawelec B, Arishtirova K, Huerta MVM, Fierro JLG (2009) The effect of CeO2 on the surface and catalytic properties of Pt/CeO2–ZrO2 catalysts for methane dry reforming. Appl Catal B Environ 89(1–2):149–159. doi:10.1016/j.apcatb.2008.11.035

    Article  CAS  Google Scholar 

  32. Otsuka K, Wang Y, Nakamura M (1999) Direct conversion of methane to synthesis gas through gas-solid reaction using CeO2–ZrO2 solid solution at moderate temperature. Appl Catal A Gen 183(2):317–324

    Article  CAS  Google Scholar 

  33. Otsuka K, Wang Y, Sunada E, Yamanaka I (1998) Direct partial oxidation of methane to synthesis gas by cerium oxide. J Catal 175(2):152–160

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partly supported by “High-Tech Research Center” Project for Private Universities: matching fund subsidy from MEXT (Ministry for Education, Culture, Sports, Science, and Technology (2007–2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimitsu Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitamura, S., Su-enaga, T., Ikenaga, No. et al. Steam Reforming of Glycerin Using Ni-based Catalysts Loaded on CaO–ZrO2 Solid Solution. Catal Lett 141, 895–905 (2011). https://doi.org/10.1007/s10562-011-0587-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0587-1

Keywords

Navigation