Skip to main content

In-Situ Electron Energy Loss Spectroscopy Study of Mn-Promoted Co/TiO2 Fischer–Tropsch Catalysts

Abstract

The conversion of synthesis gas to hydrocarbon fuels by Co catalysts through the Fischer–Tropsch process has received renewed attention particularly with regard to the role of promoters. In this letter, we utilize scanning transmission electron microscopy imaging and electron energy-loss spectroscopy to elucidate the interaction between the Mn promoter, the Co nano-catalysts, and the TiO2 support. In-situ heating experiments show the diffusion of Mn and Ti-support onto the Co particle under reducing conditions.

Graphical Abstract

Changes in the elemental distribution during in-situ reduction at 350 °C of as-prepared Mn-promoted Co catalysts on TiO2. While the morphology of the Co particles does not change, the Mn appears to be distributed more homogeneously on the Co surface and some of the TiO2 support has migrated onto the Co particle during in-situ heating (broken line circle).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Iglesia E (1997) Appl Catal A Gen 161:59

    Article  CAS  Google Scholar 

  2. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692

    Article  CAS  Google Scholar 

  3. Tsakoumis NE, Ronning M, Borg O et al (2010) Catal Today 154:162

    Article  CAS  Google Scholar 

  4. Dry ME (2002) Catal Today 71:227

    Article  CAS  Google Scholar 

  5. Dry ME (2002) J Chem Technol Biotechnol 77:43

    Article  CAS  Google Scholar 

  6. Schulz H (1999) Appl Catal A Gen 186:3

    Article  CAS  Google Scholar 

  7. Feltes TE, Espinosa-Alonso L, de Smit E et al (2010) J Catal 270:95

    Article  CAS  Google Scholar 

  8. Morales F, de Groot FMF, Gijzeman OLJ et al (2005) J Catal 230:301

    Article  CAS  Google Scholar 

  9. Morales F, Grandjean D, Mens A et al (2006) J Phys Chem B 110:8626

    Article  CAS  Google Scholar 

  10. Feltes TE, Zhao Y, Klie RF et al (2010) ChemCatChem 2:1065

    Article  CAS  Google Scholar 

  11. Wang C-B, Cai Y, Wachs IE (1999) Langmuir 15:1223

    Article  CAS  Google Scholar 

  12. Haber J (1984) Pure Appl Chem 56:1663

    Article  CAS  Google Scholar 

  13. Ziolkowski J, Kozlowski R, Mocala K et al (1980) J Solid State Chem 35:297

    Article  CAS  Google Scholar 

  14. Spivey JJ (1993) Catalysis: a review of recent literature. Royal Society of Chemistry

  15. Stevenson SA, Dumesic JA, Baker RTK et al (1987) Metal-support interactions in catalysis singering, and redispersion. Van Nostrand Reinhold Company, NY

    Google Scholar 

  16. Chen JJ, Ruckenstein E (1981) J Phys Chem 85:1606

    Article  CAS  Google Scholar 

  17. Ruckenstein E, Chen JJ (1982) J Colloid Interf Sci 86:1

    Article  CAS  Google Scholar 

  18. Ruckenstein E, Hu XD (1985) Langmuir 1:756

    Article  CAS  Google Scholar 

  19. Ruckenstein E, Lee SH (1987) J Catal 104:259

    Article  CAS  Google Scholar 

  20. Sushumna I, Ruckenstein E (1985) J Catal 94:239

    Article  CAS  Google Scholar 

  21. Tauster SJ (1987) Acc Chem Res 20:389

    Article  CAS  Google Scholar 

  22. Tauster SJ, Fung SC, Baker RTK et al (1981) Science 211:1121

    Article  CAS  Google Scholar 

  23. Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:170

    Article  CAS  Google Scholar 

  24. Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope. Plenum, New York

    Google Scholar 

  25. de Groot FMF (2008) Inorg Chim Acta 361:850

    Article  Google Scholar 

  26. de Groot FMF, Fuggle JC, Thole BT et al (1990) Phys Rev B 42:5459

    Article  Google Scholar 

  27. de Groot FMF (1994) J Electron Spectros Relat Phenom 67:529

    Article  Google Scholar 

  28. Sparrow TG, Williams BG, Rao CNR et al (1984) Chem Phys Lett 108:547

    Article  CAS  Google Scholar 

  29. Wang ZL, Yin JS, Jiang YD (2000) Micron 31:571

    Article  CAS  Google Scholar 

  30. Wong J, Lytle FW, Messmer RP et al (1984) Phys Rev B 30:5596

    Article  CAS  Google Scholar 

  31. Sankararaman M, Perry D (1992) J Mater Sci 27:2731

    Article  CAS  Google Scholar 

  32. Zhao Y, Feltes TE, Regalbuto JR et al (2010) J Appl Phys 108:063704

    Article  Google Scholar 

  33. James EM, Browning ND (1999) Ultramicroscopy 78:125

    Article  CAS  Google Scholar 

  34. James EM, Browning ND, Nicholls AW et al (1998) J Electron Microsc Tokyo 47:561

    CAS  Google Scholar 

  35. Bosman M, Watanabe M, Alexander DTL et al (2006) Ultramicroscopy 106:1024

    Article  CAS  Google Scholar 

  36. Hu X, Sun Y, Yuan J (2008) Ultramicroscopy 108:465

    Article  CAS  Google Scholar 

  37. Botton GA, Appel CC, Horsewell A et al (1995) J Microsc-Oxf 180:211

    CAS  Google Scholar 

  38. Klie RF, Browning ND (2000) Appl Phys Lett 77:3737

    Article  CAS  Google Scholar 

  39. Xu X-L, Chen Z-H, Li Y et al (2009) Surf Sci 603:653

    Article  CAS  Google Scholar 

  40. Maphanga RR, Parker SC, Ngoepe PE (2009) Surf Sci 603:3184

    Article  CAS  Google Scholar 

  41. Lazzeri M, Vittadini A, Selloni A (2001) Phys Rev B 63:155409

    Article  Google Scholar 

  42. Morales F, Grandjean D, de Groot FMF et al (2005) Phys Chem Chem Phys 7:568

    Article  CAS  Google Scholar 

  43. Vitos L, Ruban AV, Skriver HL et al (1998) Surf Sci 411:186

    Article  CAS  Google Scholar 

  44. Iddir H, Skavysh V, Ogut S et al (2006) Phys Rev B 73:041403

    Article  Google Scholar 

  45. Lopez N, Norskov JK, Janssens TVW et al (2004) J Catal 225:86

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors YZ and RFK would like to acknowledge support for this research by the American Chemical Society-Petroleum Research Fund (grant number 47307-G). TEF, RJM and JRR would like to acknowledge support from the National Science Foundation (CBET-#0626505). The authors acknowledge the Research Resource Center of UIC for providing instrumentation for the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, Y., Feltes, T.E., Regalbuto, J.R. et al. In-Situ Electron Energy Loss Spectroscopy Study of Mn-Promoted Co/TiO2 Fischer–Tropsch Catalysts. Catal Lett 141, 641–648 (2011). https://doi.org/10.1007/s10562-011-0559-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0559-5

Keywords

  • Mn/Co/TiO2 Fischer–Tropsch Catalyst
  • STEM
  • EELS
  • In-situ heating experiment