Skip to main content
Log in

Promotion Effects of Platinum and Ruthenium on Carbon Nanotube Supported Cobalt Catalysts for Fischer–Tropsch Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Carbon nanotube supported nano-size monometallic and noble metal (Pt and Ru) promoted cobalt catalysts were prepared by incipient wetness impregnation (IWI) using solution of cobalt nitrate and characterized by nitrogen adsorption isotherm, X-ray diffraction (XRD), temperature programmed reduction, in situ magnetic method and TEM. Analysis of the magnetization and H2-TPR data suggested promotion with platinum and ruthenium significantly decreased the cobalt species reduction temperature. TEM and XRD results showed that the presence of noble metal promoters had no significant effect on the size of cobalt for carbon naotube as catalytic support. Promotion of cobalt carbon nanotube-supported catalysts with small amounts of Pt and Ru resulted in slight increase in Fischer–Tropsch cobalt time yield. The Pt and Ru promoted cobalt catalyst exhibited carbon monoxide conversion of 37.1 and 31.4, respectively. C5+ hydrocarbon selectivity was attained at 80.0%. The Pt promoted cobalt supported on carbon nanotube yielded better catalytic stability than that of the monometallic cobalt catalyst.

Graphical Abstract

Over carbon nanotube supported cobalt catalyst, the addition of noble promoter significantly decreased the cobalt reduction temperature, but had no significant influence on the cobalt particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692

    Article  CAS  Google Scholar 

  2. Dry ME (1999) Appl Catal A Gen 189:185

    Article  CAS  Google Scholar 

  3. Chen W, Fan ZL, Pan XL, Bao XH (2008) J Am Chem Soc 130:9414

    Article  CAS  Google Scholar 

  4. Kang JC, Zhang SL, Zhang QH, Wang Y (2009) Angewandte Chemie-International Edition 48:2565

    Article  CAS  Google Scholar 

  5. Bertole CJ, Mims CA, Kiss G (2004) J Catal 221:191

    Article  CAS  Google Scholar 

  6. Dalai AK, Davis BH (2008) Appl Catal A Gen 348:1

    Article  CAS  Google Scholar 

  7. Khodakov AY, Griboval-Constant A, Bechara R, Villain F (2001) J Phys Chem B 105:9805

    Article  CAS  Google Scholar 

  8. Zhang Y, Yoneyama Y, Fujimoto K, Tsubaki N (2003) Top Catal 26:129

    Article  CAS  Google Scholar 

  9. Voss A, Borgmann D, Wedler G (2002) J Catal 212:10

    Article  CAS  Google Scholar 

  10. Spadaro L, Arena F, Granados ML, Ojeda M, Fierro JLG, Frusteri F (2005) J Catal 234:451

    Article  CAS  Google Scholar 

  11. Morales F, de Smit E, de Groot FMF, Visser T, Weckhuysen BM (2007) J Catal 246:91

    Article  CAS  Google Scholar 

  12. Iglesia E, Soled SL, Fiato RA (1992) J Catal 137:212

    Article  CAS  Google Scholar 

  13. Chu W, Chernavskii PA, Gengembre L, Pankina GA, Fongarland P, Khodakov AY (2007) J Catal 252:215

    Article  CAS  Google Scholar 

  14. Hui Zhang CL, Chu W, Hong J, Khodakov AY, Chernavskii PA, Zheng J, Tong D (2009) J Mater Chem 19:9241

    Article  Google Scholar 

  15. Tavasoli A, Abbaslou RMM, Trepanier M, Dalai AK (2008) Appl Catal A Gen 345:134

    Article  CAS  Google Scholar 

  16. Abbaslou RMM, Tavassoli A, Soltan J, Dalai AK (2009) Appl Catal A Gen 367:47

    Article  CAS  Google Scholar 

  17. Trepanier M, Tavasoli A, Dalai AK, Abatzoglou N (2009) Fuel Process Technol 90:367

    Article  CAS  Google Scholar 

  18. Chen W, Pan XL, Bao XH (2007) J Am Chem Soc 129:7421

    Article  CAS  Google Scholar 

  19. Huang LH, Chu W, Long Y, Ci ZM, Luo SZ (2006) Catal Lett 108:113

    Article  CAS  Google Scholar 

  20. Hong JP, Chu W, Chen MH, Wang XD, Zhang T (2007) Catal Commun 8:593

    Article  CAS  Google Scholar 

  21. Zhang Y, Chu W, Cao WM, Luo CR, Wen XG, Zhou KL (2000) Plasma Chem Plasma Process 20:137

    Article  CAS  Google Scholar 

  22. Khodakov AY, Lynch J, Bazin D, Rebours B, Zanier N, Moisson B, Chaumette P (1997) J Catal 168:16

    Article  CAS  Google Scholar 

  23. Chu W, Wang LN, Chernavskii PA, Khodakov AY (2008) Angew Chem Int Ed Engl 47:5052

    Article  CAS  Google Scholar 

  24. Chernavskii PA, Khodakov AY, Pankina GV, Girardon JS, Quinet E (2006) Appl Catal A Gen 306:108

    Article  CAS  Google Scholar 

  25. Sun ZY, Zhang XR, Na N, Liu ZM, Han BX, An GM (2006) J Phys Chem B 110:13410

    Article  CAS  Google Scholar 

  26. Chen W, Pan XL, Willinger MG, Su DS, Bao XH (2006) J Am Chem Soc 128:3136

    Article  CAS  Google Scholar 

  27. Wang YQ, Yang CM, Schmidt W, Spliethoff B, Bill E, Schuth F (2005) Adv Mater 17:53

    Article  CAS  Google Scholar 

  28. van Steen E, Sewell GS, Makhothe RA, Micklethwaite C, Manstein H, de Lange M, O’Connor CT (1996) J Catal 162:220

    Article  Google Scholar 

  29. Girardon JS, Lermontov AS, Gengembre L, Chernavskii PA, Griboval-Constant A, Khodakov AY (2005) J Catal 230:339

    Article  CAS  Google Scholar 

  30. Girardon JS, Quinet E, Griboval-Constant A, Chernavskii PA, Gengembre L, Khodakov AY (2007) J Catal 248:143

    Article  CAS  Google Scholar 

  31. Girardon JS, Constant-Griboval A, Gengembre L, Chernavskii PA, Khodakov AY (2005) Catal Today 106:161

    Article  CAS  Google Scholar 

  32. Kogelbauer A, Goodwin JG, Oukaci R (1996) J Catal 160:125

    Article  CAS  Google Scholar 

  33. Hosseini SA, Taeb A, Feyzi F (2005) Catal Commun 6:233

    Article  CAS  Google Scholar 

  34. Das TK, Jacobs G, Patterson PM, Conner WA, Li JL, Davis BH (2003) Fuel 82:805

    Article  CAS  Google Scholar 

  35. Cai Q, Li JL (2008) Catal Commun 9:2003

    Article  CAS  Google Scholar 

  36. Jacobs G, Ji YY, Davis BH, Cronauer D, Kropf AJ, Marshall CL (2007) Appl Catal A Gen 333:177

    Article  CAS  Google Scholar 

  37. Tsubaki N, Sun SL, Fujimoto K (2001) J Catal 199:236

    Article  CAS  Google Scholar 

  38. Ronning M, Nicholson DG, Holmen A (2001) Catal Lett 72:141

    Article  CAS  Google Scholar 

  39. Tavasoli A, Abbaslou RMM, Dalai AK (2008) Appl Catal A Gen 346:58

    Article  CAS  Google Scholar 

  40. Rothaemel M, Hanssen KF, Blekkan EA, Schanke D, Holmen A (1997) Catal Today 38:79

    Article  CAS  Google Scholar 

  41. Borg O, Storsaeter S, Eri S, Wigum H, Rytter E, Holmen A (2006) Catal Lett 107:95

    Article  CAS  Google Scholar 

  42. Bertole CJ, Mims CA, Kiss G (2002) J Catal 210:84

    Article  CAS  Google Scholar 

  43. Bahome MC, Jewell LL, Padayachy K, Hildebrandt D, Glasser D, Datye AK, Coville NJ (2007) Appl Catal A Gen 328:243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (#205903603) and by Scientific Research Fund of SiChuan Provincial Education Department and Development Program of China (863 program) (2007 AA11A117). Dr. Petr A. Chernavskii of Moscow State University was acknowledged for situ magnetic measurements. Thanks Dr. Andrei Y. Khodakov for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Zhang or Wei Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Chu, W., Zou, C. et al. Promotion Effects of Platinum and Ruthenium on Carbon Nanotube Supported Cobalt Catalysts for Fischer–Tropsch Synthesis. Catal Lett 141, 438–444 (2011). https://doi.org/10.1007/s10562-010-0536-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0536-4

Keywords

Navigation