Skip to main content
Log in

Facile and Efficient Reductive Homocoupling of Benzyl and Aryl Halides Catalyzed by Ionic Liquid [C12mim][CuCl2] in the Presence of Metallic Zinc and Copper

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A facile and efficient synthesis of bibenzyl and biaryl derivatives by reductive homocoupling reaction is described. Treatment of benzyl and aryl halides with metallic zinc and copper powder in the presence of a catalytic amount of [C12mim][CuCl2] under ligand- and base-free conditions gives the corresponding bibenzyls and biaryls in good to high yields. The product can be isolated by a simple extraction with organic solvent, and the catalytic system can be recycled or reused without any significant loss of catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Miyaura N, Suzuki A (1995) Chem Rev 95:2457

    Article  CAS  Google Scholar 

  2. Zhu SS, Swager TM (1996) Adv Mater 8:497

    Article  CAS  Google Scholar 

  3. Papillon J, Schulz E, Gelinas S, Lessard J, Lemaire M (1998) Synth Met 96:155

    Article  CAS  Google Scholar 

  4. Fanta PE (1974) Synthesis 1974:9

    Article  Google Scholar 

  5. Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M (2002) Chem Rev 102:1359

    Article  CAS  Google Scholar 

  6. Kuroboshi M, Waki Y, Tanaka H (2003) J Org Chem 68:3938

    Article  CAS  Google Scholar 

  7. Nun P, Martinez J, Lamaty F (2009) Synlett 2009:1761

    Article  Google Scholar 

  8. Kirchhoff JH, Netherton MR, Hill ID, Fu GC (2002) J Am Chem Soc 124:13662

    Article  CAS  Google Scholar 

  9. Fujihara T, Yoshida S, Terao J, Tsuji Y (2009) Org Lett 11:2121

    Article  CAS  Google Scholar 

  10. Silva AC, Senra JD, Aguiar LCS, Simas ABC, de Souza ALF, Malta LFB, Antunes OAC (2010) Tetrahedron Lett 51:3883

    Article  CAS  Google Scholar 

  11. So CM, Yeung CC, Lau CP, Kwong FY (2008) J Org Chem 73:7803

    Article  CAS  Google Scholar 

  12. Li HL, Wu ZS, Yang M, Qi YX (2010) Catal Lett 137:69

    Article  CAS  Google Scholar 

  13. Simpson CD, Mattersteig G, Martin K, Gherghel L, Bauer RE, Rader HJ, Mullen K (2004) J Am Chem Soc 126:3139

    Article  CAS  Google Scholar 

  14. King BT, Kroulík J, Robertson CR, Rempala P, Hilton CL, Korinek JD, Gortari LM (2007) J Org Chem 72:2279

    Article  CAS  Google Scholar 

  15. Patrick TB, Willaredt RP, de Gonia DJ (1985) J Org Chem 50:2232

    Article  CAS  Google Scholar 

  16. Smith MB, March J (1992) In: Carey FA, Sundberg RJ (eds) Advanced organic chemistry, 4th ed. Wiley, New York, p 715

  17. Santos LS, Rosso GB, Pilli RA, Eberlin MN (2007) J Org Chem 72:5809

    Article  CAS  Google Scholar 

  18. Coelho AV, de Souza ALF, de Lima PG, Wardell JL, Antunes OAC (2007) Tetrahedron Lett 48:7671

    Article  CAS  Google Scholar 

  19. Imperato G, Vasold R, Konig B (2006) Adv Synth Catal 348:2243

    Article  CAS  Google Scholar 

  20. Mee SPH, Lee V, Baldwin JE (2005) Chem Eur J 11:3294

    Article  CAS  Google Scholar 

  21. Becht JM, Gissot A, Wagner A, Mioskowski C (2004) Tetrahedron Lett 45:9331

    Article  CAS  Google Scholar 

  22. Johnson DK, Ciavarri JP, Ishmael FT, Schillinger KJ, van Geel TAP, Stratton SM (1995) Tetrahedron Lett 36:8565

    Article  CAS  Google Scholar 

  23. Becht JM, Catala C, Drian CL, Wagner A (2007) Org Lett 9:1781

    Article  CAS  Google Scholar 

  24. Mukhopadhyay S, Rothenberg G, Gitis D, Sasson Y (2000) J Org Chem 65:3107

    Article  CAS  Google Scholar 

  25. Goossen LJ, Rodriguez N, Melzer B, Linder C, Deng G, Levy LM (2007) J Am Chem Soc 129:4824

    Article  CAS  Google Scholar 

  26. Robinson MK, Kochurina VS Jr, Hanna JM (2007) Tetrahedron Lett 48:7687

    Article  CAS  Google Scholar 

  27. Jutand A (2008) Chem Rev 108:2300

    Article  CAS  Google Scholar 

  28. Adamo C, Amatore C, Ciofini I, Jutand A, Lakmini H (2006) J Am Chem Soc 128:6829

    Article  CAS  Google Scholar 

  29. Hashim J, Kappe CO (2007) Adv Synth Catal 349:2353

    Article  CAS  Google Scholar 

  30. Inaba S, Matsumoto H, Rieke RD (1984) J Org Chem 49:2093

    Article  CAS  Google Scholar 

  31. Raynal F, Barhdadi R, Perichon J, Savall A, Troupel M (2002) Adv Synth Catal 344:45

    Article  CAS  Google Scholar 

  32. Everson DA, Shrestha R, Weix DJ (2010) J Am Chem Soc 132:920

    Article  CAS  Google Scholar 

  33. Kazuhiko O, Junzo Y, Harukichi H (1970) Bull Chem Soc Jpn 439:836

    Google Scholar 

  34. Khurana JM, Sushma C, Maikap GC (2003) Org Biomol Chem 1:1337

    Article  Google Scholar 

  35. Sustmann R, Kopp C (1988) J Organomet Chem 347:313

    Article  CAS  Google Scholar 

  36. Eisch JJ, Fregene PO (2008) Eur J Org Chem 2008:4482

    Article  Google Scholar 

  37. Nishino T, Watanabe T, Okada M, Nishiyama Y, Sonoda N (2002) J Org Chem 67:966

    Article  CAS  Google Scholar 

  38. Mukhopadhyay S, Rothenberg G, Gitis D, Baidossi M, Ponde DE, Sasson Y (2000) J Chem Soc Perkin Trans 2:1809

    Google Scholar 

  39. Mukhopadhyay S, Rothenberg G, Gitis D, Sasson Y (2000) Org Lett 2:211

    Article  CAS  Google Scholar 

  40. Qian YL, Li GS, Huang YZ (1990) J Organomet Chem 381:29

    Article  CAS  Google Scholar 

  41. Moncomble A, Floch PL, Gosmini C (2009) Chem Eur J 15:4770

    Article  CAS  Google Scholar 

  42. Barrero AF, Herrador MM, Moral JFQ, Arteaga P, Akssira M, Hanbali FE, Arteaga JF, Dieguez HR, Sanchez EM (2007) J Org Chem 72:2251

    Article  CAS  Google Scholar 

  43. Barrero AF, Herrador MM, Moral JFQ, Arteaga P, Arteaga JF, Dieguez HR, Sanchez EM (2007) J Org Chem 72:2988

    Article  CAS  Google Scholar 

  44. Dahlen A, Prasad E, Flowers RA II, Hilmersson G (2005) Chem Eur J 11:3279

    Article  CAS  Google Scholar 

  45. Rogers RD, Seddon KR (2005) Ionic liquids: fundamentals, progress, challenges, and opportunities. American Chemical Society, Washington

    Google Scholar 

  46. Zhang SJ, Lu XM (2006) Ionic liquids: from fundamental research to industrial applications. Science Press, Beijing

    Google Scholar 

  47. Wasserschein P, Welton T (2008) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  48. Blaszczyk I, Trzeciak AM, Ziolkowski JJ (2009) Catal Lett 133:262

    Article  CAS  Google Scholar 

  49. Wang W, Cheng W, Shao L, Yang J (2008) Catal Lett 121:77

    Article  CAS  Google Scholar 

  50. Roberts NJ, Lye GJ (2002) Application of room temperature ionic liquids in biocatalysis: opportunities and challenges. American Chemical Society, Washington

    Google Scholar 

  51. Mac Farlane DR, Forsyth M, Howlett PC, Pringle JM, Sun JZ, Annat G, Neil W, Izgorodina EI (2007) Acc Chem Res 40:1165

    Article  CAS  Google Scholar 

  52. Meng Y, Pino V, Anderson JL (2009) Anal Chem 81:7107

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Basic Research Program (973) of China (No. 613740101) and Natural Science Foundation of Jiangsu Province for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, YL., Li, F., Gu, GL. et al. Facile and Efficient Reductive Homocoupling of Benzyl and Aryl Halides Catalyzed by Ionic Liquid [C12mim][CuCl2] in the Presence of Metallic Zinc and Copper. Catal Lett 141, 467–473 (2011). https://doi.org/10.1007/s10562-010-0535-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0535-5

Keywords

Navigation