Skip to main content
Log in

Hydrogenation of Succinic Acid to γ-Butyrolactone (GBL) Over Palladium-Alumina Composite Catalyst Prepared by a Single-Step Sol–Gel Method

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Mesoporous palladium-alumina (Pd-A) composite catalysts prepared by a single-step sol–gel method were calcined at various temperatures to control palladium surface area and acidity. The Pd-A catalysts were characterized by XRD, BET, N2 adsorption–desorption isotherm, H2 chemisorption, 27Al MAS NMR, NH3-TPD, and HR-TEM analyses. Liquid-phase hydrogenation of succinic acid to γ-butyrolactone (GBL) was carried out over Pd-A catalyst in a batch reactor. The effect of calcination temperature of Pd-A catalyst on the palladium surface area and catalytic performance was investigated. In the hydrogenation of succinic acid, conversion of succinic acid increased with increasing palladium surface area of Pd-A catalyst. Selectivity for GBL depended on the formation of succinic anhydride (an intermediate product formed by acid catalysis) and by-products (formed by hydrogenolysis). Nevertheless, yield for GBL also increased with increasing palladium surface area of Pd-A catalyst. Thus, palladium surface area played an important role in enhancing the catalytic performance of Pd-A catalyst in the hydrogenation of succinic acid to GBL.

Graphical Abstract

In the hydrogenation of succinic acid to γ-butyrolactone (GBL) over Pd-A catalyst (mesoporous palladium-alumina composite catalyst prepared by a single-step sol–gel method), conversion of succinic acid and yield for GBL increased with increasing palladium surface area of the catalyst.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Deshpande RM, Buwa VV, Rode CV, Chaudhari RV, Mills PL (2002) Catal Commun 3:269–274

    Article  CAS  Google Scholar 

  2. Cukalovic A, Stevens CV (2008) Biofuels Bioprod Bioref 2:505–529

    Article  CAS  Google Scholar 

  3. Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Chem Eng Technol 31:647–654

    Article  CAS  Google Scholar 

  4. Jung SM, Godard E, Jung SY, Park K-C, Choi JU (2003) J Mol Catal A Chem 198:297–302

    Article  CAS  Google Scholar 

  5. Budroni G, Corma A (2008) J Catal 257:403–408

    Article  CAS  Google Scholar 

  6. Gao CG, Zhao YX, Liu DS (2007) Catal Lett 118:50–54

    Article  CAS  Google Scholar 

  7. Luque R, Clark JH, Yoshida K, Gai PL (2009) Chem Commun 5303–5307

  8. Mihn DP, Besson M, Pinel C, Fuertes P, Petitjean C (2010) Top Catal 53:1270–1273

    Article  Google Scholar 

  9. Hong UG, Hwang S, Seo JG, Yi J, Song IK (2010) Catal Lett 138:28–33

    Article  CAS  Google Scholar 

  10. Seo JG, Youn MH, Lee H-I, Kim JJ, Yang E, Chung JS, Kim P, Song IK (2008) Chem Eng J 141:298–304

    Article  CAS  Google Scholar 

  11. Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK (2008) Korean J Chem Eng 25:41–45

    Article  CAS  Google Scholar 

  12. Cho KM, Park S, Seo JG, Youn MH, Nam I, Baeck S-H, Chung JS, Jun K-W, Song IK (2009) Chem Eng J 146:307–314

    Article  CAS  Google Scholar 

  13. Seo JG, Youn MH, Park S, Song IK (2008) Int J Hydrogen Energy 33:7427–7434

    Article  CAS  Google Scholar 

  14. Seo JG, Youn MH, Cho KM, Park S, Song IK (2007) J Power Sour 173:943–949

    Article  CAS  Google Scholar 

  15. Cho KM, Park S, Seo JG, Youn MH, Baeck S-H, Jun K-W, Chung JS, Song IK (2008) Appl Catal B Environ 83:195–201

    Article  CAS  Google Scholar 

  16. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Pure Appl Chem 57:602–619

    Article  Google Scholar 

  17. Cai S-H, Rashkeev SN, Pantelides ST, Sohlberg K (2003) Phys Rev B 67:224104-1–224104-10

    Google Scholar 

  18. Rinaldi R, Schuchardt U (2005) J Catal 236:335–345

    Article  CAS  Google Scholar 

  19. Krokidis X, Raybaud P, Gobichon A-E, Rebours B, Euzen R, Toulhoat H (2001) J Phys Chem B 105:5121–5130

    Article  CAS  Google Scholar 

  20. Sohlberg K, Pantelides ST, Pennycook SJ (2001) J Am Chem Soc 123:26–29

    Article  CAS  Google Scholar 

  21. Kim Y, Kim C, Kim P, Yi J (2005) J Non-Cryst Solids 351:550–556

    Article  CAS  Google Scholar 

  22. O’Dell LA, Savin SLP, Chadwick AV, Smith ME (2007) Solid State Nucl Mag 31:169–173

    Article  Google Scholar 

  23. Kim DH, Woo SI, Yang O-B (2000) Appl Catal B Environ 26:285–289

    Article  CAS  Google Scholar 

  24. Iwamoto R, Fernadez C, Amoureux JP, Grimblot J (1998) J Phys Chem B 102:4342–4349

    Article  CAS  Google Scholar 

  25. Chuah GK, Jaenicke S, Xu TH (2000) Micropor Mesopor Mater 37:345–353

    Article  CAS  Google Scholar 

  26. Delhomme C, Weuster-Botz D, Kühn FE (2009) Green Chem 11:13–26

    Article  CAS  Google Scholar 

  27. Novakova EK, McLaughlin L, Burch R, Crawford P, Griffin K, Hardacre C, Hu PJ, Rooney DW (2007) J Catal 249:93–101

    Article  CAS  Google Scholar 

  28. Tsuji J (1986) Pure Appl Chem 58:869–878

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This subject is supported by Korea Ministry of Environment as “Converging Technology Project (202-091-001)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kyu Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, U.G., Lee, J., Hwang, S. et al. Hydrogenation of Succinic Acid to γ-Butyrolactone (GBL) Over Palladium-Alumina Composite Catalyst Prepared by a Single-Step Sol–Gel Method. Catal Lett 141, 332–338 (2011). https://doi.org/10.1007/s10562-010-0502-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0502-1

Keywords

Navigation