Skip to main content
Log in

Reaction Between Ethylene and Acetate Species on Clean and Oxygen-Covered Pd(100): Implications for the Vinyl Acetate Monomer Formation Pathway

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The reaction between gas-phase ethylene and adsorbed acetate species on Pd(100)-p(2 × 2)-O and Pd(100)-c(2 × 2)-O surfaces is studied using infrared spectroscopy. It is found that acetate species are removed more rapidly by gas-phase ethylene on oxygen-covered Pd(100) than on Pd(111). However, in contrast to reaction on Pd(111), where vinyl acetate monomer (VAM) formation is detected by infrared spectroscopy, only CO is found on oxygen-covered Pd(100) surfaces. In the case of Pd(111), it has been shown that VAM is stabilized on the crowded, ethylidyne-covered surface. Since ethylidyne species do not form on Pd(100), any VAM that is formed can thermally decompose. The reaction shows an isotope effect when C2D4 is substituted for C2H4, indicating the hydrogen is involved in the rate-limiting step. Based on the surface chemistry found for VAM on a Au/Pd(111) alloy, where 30 to 40% ML of gold inhibits VAM decomposition, it is suggested that the VAM formation rate will increase on (100) alloy surfaces, while it will decrease at higher gold coverages since acetate formation is inhibited.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. U.S. Patent number 3658888 (1967)

  2. Han YF, Kumar D, Sivadinayarana C, Goodman DW (2004) J Catal 224:60

    Article  CAS  Google Scholar 

  3. Chen MS, Kumar D, Yi C-W, Goodman DW (2005) Science 310:291

    Article  CAS  Google Scholar 

  4. Kumar D, Chen MS, Goodman DW (2007) Catal Today 123:77

    Article  CAS  Google Scholar 

  5. Han P, Axnanda S, Lyubinetsky I, Goodman DW (2007) J Am Chem Soc 129:14355

    Article  CAS  Google Scholar 

  6. Stacchiola D, Calaza F, Burkholder L, Tysoe WT (2004) J Am Chem Soc 126:15384

    Article  CAS  Google Scholar 

  7. Stacchiola D, Calaza F, Burkholder L, Schwabacher AW, Neurock M, Tysoe WT (2005) Angew Chem 44:4572

    Article  CAS  Google Scholar 

  8. Calaza F, Stacchiola D, Neurock M, Tysoe WT (2010) Catal Lett 138:135

    Article  CAS  Google Scholar 

  9. Samonos B, Boutry P, Montarnal R (1971) J Catal 23:19

    Article  Google Scholar 

  10. Calaza F, Stacchiola D, Neurock M, Tysoe WT (2005) Surf Sci 598:263

    Article  CAS  Google Scholar 

  11. Stuve EM, Madix RJ (1985) J Phys Chem 89:105

    Article  CAS  Google Scholar 

  12. Stuve EM, Madix RJ (1985) J Phys Chem 89:3183

    Article  CAS  Google Scholar 

  13. Li Z, Calaza F, Plaisance C, Neurock M, Tysoe WT (2009) J Phys Chem C 113:971

    Article  Google Scholar 

  14. Stuve EM, Madix RJ, Brundle CR (1984) Surf Sci 146:155

    Article  CAS  Google Scholar 

  15. Zheng G, Altman EI (2002) Surf Sci 504:253

    Article  CAS  Google Scholar 

  16. Simmons GW, Wang Y-N, Marcos J, Klier K (1991) J Phys Chem 95:4522

    Article  CAS  Google Scholar 

  17. Wu G, Kaltchev M, Tysoe WT (1999) Surf Rev Letts 6:13

    Article  CAS  Google Scholar 

  18. Kaltchev M, Tysoe WT (2000) J Catal 196:40

    Article  CAS  Google Scholar 

  19. Li Z, Gao F, Tysoe WT (2008) Surf Sci 602:416

    Article  CAS  Google Scholar 

  20. Kesmodel LL, Dubois L, Somorjai GA (1979) J Chem Phys 70:2180

    Article  CAS  Google Scholar 

  21. Skinner P, Howard MW, Oxton IA, Kettle SFA, Powell DB, Sheppard NJ (1981) J Chem Soc Faraday Trans 2(77):1203

    Google Scholar 

  22. Kesmodel LL, Gates JA (1981) Surf Sci 111:L747

    Article  CAS  Google Scholar 

  23. Gates JA, Kesmodel LL (1983) Surf Sci 124:68

    Article  CAS  Google Scholar 

  24. Bourguignon B, Carrez S, Dragnea B, Dubost H (1998) Surf Sci 418:171

    Article  CAS  Google Scholar 

  25. Hoffmann FM (1983) Surf Sci Rep 3:107

    Article  CAS  Google Scholar 

  26. Giessel T, Schaff O, Hirschmugl CJ, Fernandez V, Schindler KM, Theobald A, Bao S, Lindsay R, Berndt W, Bradshaw AM, Baddeley C, Lee AF, Lambert RM, Woodruff DP (1998) Surf Sci 406:90

    Article  CAS  Google Scholar 

  27. Hansen E, Neurock M (2001) J Phys Chem B 105:9218

    Article  CAS  Google Scholar 

  28. Stuve EM, Madix RJ (1985) Surf Sci 160:293

    Article  CAS  Google Scholar 

  29. Guo X-C, Madix RJ (1995) J Am Chem Soc 117:5523

    Article  CAS  Google Scholar 

  30. Stacchiola D, Calaza F, Neurock M, Tysoe WT (2010) J Am Chem Soc 132:2202

    Article  Google Scholar 

  31. Kragten DD, van Santen RA, Crawford MK, Provine WD, Lerou JJ (1999) Inorg Chem 38:331

    Article  CAS  Google Scholar 

  32. Nakamura S, Yasui T (1970) J Catal 17:366

    Article  CAS  Google Scholar 

  33. Crathorne EA, MacGowan D, Mouris SR, Rawlinson AP (1994) J Catal 149:54

    Article  Google Scholar 

  34. Calaza F, Li Z, Gao F, Boscoboinik J, Tysoe WT (2008) Surf Sci 602:3523

    Article  CAS  Google Scholar 

  35. Li Z, Calaza F, Gao F, Tysoe WT (2007) Surf Sci 601:1351

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support of this work by the U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences, under Grant No. DE-FG02-92ER14289.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred T. Tysoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calaza, F., Li, Z. & Tysoe, W.T. Reaction Between Ethylene and Acetate Species on Clean and Oxygen-Covered Pd(100): Implications for the Vinyl Acetate Monomer Formation Pathway. Catal Lett 141, 266–270 (2011). https://doi.org/10.1007/s10562-010-0488-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0488-8

Keywords

Navigation