Skip to main content

Advertisement

Log in

Combined Steam and Carbon Dioxide Reforming of Methane on Ni/MgAl2O4: Effect of CeO2 Promoter to Catalytic Performance

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic performance during combined steam and carbon dioxide reforming of methane (SCR) was investigated on Ni/MgAl2O4 catalyst promoted with CeO2. The SCR catalyst was prepared by co-impregnation method using nickel and cerium metal precursors on hydrotalcite-like MgAl2O4 support. In terms of catalytic activity and stability, CeO2-promoted Ni/MgAl2O4 catalyst is superior to Ni–CeO2/Al2O3 or Ni/MgAl2O4 catalysts because of high resistance to coke formation and suppressed aggregation of nickel particles. The role of CeO2 on Ni/MgAl2O4 catalyst was elucidated by carrying out the various characterization methods in the viewpoint of the aggregation of nickel particles and metal-support interactions. The observed superior catalytic performance on CeO2-promoted Ni/MgAl2O4 catalyst at the weight ratio of MgO/Al2O3 of 3/7 seems to be closely related to high dispersion and low aggregation of active metals due to their strong interaction with the MgAl2O4 support and the adjacent contact of Ni and CeO2 species. The CeO2 promoter also plays an important role to suppress particle aggregation by forming an appropriate interaction of NiO–CeO2 as well as Ni–MgAl2O4 with the concomitant enhancement of mobile oxygen content.

Graphical Abstract

The catalytic performance during combined steam and carbon dioxide reforming of methane was investigated on Ni/MgAl2O4 catalyst promoted with CeO2. In terms of catalytic activity and stability, CeO2-promoted Ni/MgAl2O4 catalyst (b) is superior to Ni/MgAl2O4 catalyst (a) because of high resistance to coke formation and suppressed aggregation of nickel particles at the following reaction conditions; T = 850 °C, P = 1.0 MPa, CH4/CO2/H2O/N2 molar ratio of 3/1.2/3/3 and SV = 200,000 mL(CH4)/gcat/h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Clarke SH, Dicks AL, Pointon K, Smith TA, Swann A (1997) Catal Today 38:411

    Article  CAS  Google Scholar 

  2. Katikaneni S, Yuh C, Abens S, Farooque M (2002) Catal Today 77:99

    Article  CAS  Google Scholar 

  3. Cheekatamarla PK, Finnerty CM (2006) J Power Source 160:490

    Article  CAS  Google Scholar 

  4. Yagi F, Kanai R, Wakamatsu S, Kajiyama R, Suehiro Y, Shimura M (2005) Catal Today 104:2

    Article  CAS  Google Scholar 

  5. Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Park SB (2008) Int J Hydrogen Energy 33:2036

    Article  CAS  Google Scholar 

  6. Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Park SB (2008) Appl Catal A Gen 340:183

    Article  CAS  Google Scholar 

  7. Jun KW, Roh HS, Chary KVR (2007) Catal Surv Asia 11:97

    Article  CAS  Google Scholar 

  8. Roh HS, Jun KW (2008) Catal Surv Asia 12:239

    Article  CAS  Google Scholar 

  9. Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Nature 352:225

    Article  CAS  Google Scholar 

  10. Ross JRH, van Keulan ANJ, Hegarty MES, Seshan K (1996) Catal Today 30:193

    Article  CAS  Google Scholar 

  11. JOGMEC (2006) Development of Japanese GTL technology; JCOAL annual conference on clean coal technology, Tokyo, Japan, November 2006

  12. Ha KS, Bae JW, Woo KJ, Jun KW (2010) Environ Sci Technol 44(4):1412

    Article  CAS  Google Scholar 

  13. Roh HS, Jun KW, Baek SC, Park SE (2002) Catal Lett 81:147

    Article  CAS  Google Scholar 

  14. Vaidya PD, Rodrigues AE (2006) Chem Eng J 117:39

    Article  CAS  Google Scholar 

  15. Resini C, Cavallaro S, Frusteri F, Freni S, Buscar G (2007) React Kinet Catal Lett 90:117

    Article  CAS  Google Scholar 

  16. Takehira K, Shishido T, Wang P, Kosaka T, Takaki K (2004) J Catal 221:43

    Article  CAS  Google Scholar 

  17. Bhatatcharyya A, Chang VW, Schumacher DJ (1998) Appl Clay Sci 13:317

    Article  Google Scholar 

  18. Olafsen A, Slagtern A, Dahl IM, Olsbye U, Schuurman Y, Mirodatos C (2005) J Catal 229:163

    Article  CAS  Google Scholar 

  19. Fonseca A, Assaf EM (2005) J Power Source 142:154

    Article  CAS  Google Scholar 

  20. Basile F, Fornasari G, Poluzzi E, Vaccari A (1998) Appl Clay Sci 13:329

    Article  CAS  Google Scholar 

  21. Coleman LJI, Epling W, Hudgins RR, Croiset E (2009) Appl Catal A Gen 363:52

    Article  CAS  Google Scholar 

  22. Perez-Lopez OW, Senger A, Marcilio NR, Lansarin MA (2006) Appl Catal A Gen 303:234

    Article  CAS  Google Scholar 

  23. Daza CE, Gallego J, Moreno JA, Mondragon F, Moreno S, Molina R (2008) Catal Today 133–135:357

    Article  Google Scholar 

  24. Christensen KO, Chen D, Lødeng R, Holmen A (2006) Appl Catal A Gen 314:9

    Article  CAS  Google Scholar 

  25. Alvarez-Galvan MC, Navarro M, Rosa F, Briceno Y, Gordillo Alvarez F, Fierro JLG (2008) Int J Hydrogen Energy 33:652

    Article  CAS  Google Scholar 

  26. Gonzalez-DelaCruz VM, Holgado JP, Pereniguez R, Caballero A (2008) J Catal 257:307

    Article  CAS  Google Scholar 

  27. Sanchez-Sanchez MC, Navarro RM, Fierro JLG (2007) Int J Hydrogen Energy 32:1462

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong-Wook Bae or Kwan-Young Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baek, SC., Bae, JW., Cheon, J.Y. et al. Combined Steam and Carbon Dioxide Reforming of Methane on Ni/MgAl2O4: Effect of CeO2 Promoter to Catalytic Performance. Catal Lett 141, 224–234 (2011). https://doi.org/10.1007/s10562-010-0483-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0483-0

Keywords

Navigation