Skip to main content
Log in

Fischer–Tropsch Synthesis: TPR-XAFS Analysis of Co/Silica and Co/Alumina Catalysts Comparing a Novel NO Calcination Method with Conventional Air Calcination

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel conversion of cobalt nitrate to cobalt oxide using nitric oxide (Sietsma et al., patent applications WO 2008029177 and WO 2007071899) was utilized to prepare silica- and alumina-supported cobalt catalysts, in order to evaluate the materials for their sensitivity to Fischer–Tropsch synthesis process parameters by kinetics. In the current contribution, TPR-XAFS was used to probe the differences in reducibility and crystallite size resulting from the two procedures over two catalysts having widely different degrees of support interaction with the cobalt oxides. The nitric oxide calcination method resulted in smaller cobalt oxide crystallites compared to the air calcination method, and their increased surface contact with the support resulted in a slower, more broadened, reduction profile. A much more significant impact on crystallite size and reducibility was observed for the more weakly interacting Co/silica catalyst. That is, the already existing strong interaction between alumina and cobalt oxides dictated a small crystallite size upon reduction of the air calcined catalyst, and a measurable but more modest decrease in crystallite size was afforded by the nitric oxide calcination procedure for the alumina supported catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iglesia E (1997) Appl Catal A Gen 161:59

    Article  CAS  Google Scholar 

  2. Lok CM (2004) Stud Surf Sci Catal 147:283

    Article  CAS  Google Scholar 

  3. Bezemer GL, Bitter JH, Kuipers HP, Oosterbeek H, Holewijn JE, Xu XD, Kapteijn F, van Dillen AJ, de Jong KP (2006) J Am Chem Soc 128:3956

    Article  CAS  Google Scholar 

  4. Barbier A, Tuel A, Arcon I, Kodre A, Martin GA (2001) J Catal 200:106

    Article  CAS  Google Scholar 

  5. Jacobs G, Das TK, Zhang Y-Q, Li J, Racoillet G, Davis BH (2002) Appl Catal A Gen 233:263

    Article  CAS  Google Scholar 

  6. Jacobs G, Ji Y, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2007) Appl Catal A Gen 333:177

    Article  CAS  Google Scholar 

  7. Sietsma JRA, van Dillen AJ, de Jongh PE, de Jong KP (2008) PCT Int Appl WO 2008029177

  8. Sietsma JRA, van Dillen AJ, de Jongh PE, de Jong KP (2007) PCT Int Appl WO 2007071899

  9. Sietsma JRA, Meeldijk JD, den Breejen JP, Versluijs-Helder M, van Dillen AJ, de Jongh PE, de Jong KP (2007) Angew Chem Int Ed 46:4547

    Article  CAS  Google Scholar 

  10. van Berge PJ, Barradas S, van de Loosdrecht J, Visagie JL (2001) Erdgas Kohle 117:138

    Google Scholar 

  11. Li J, Zhan X, Zhang Y, Jacobs G, Das TK, Davis BH (2002) Appl Catal A Gen 228:203

    Article  CAS  Google Scholar 

  12. Jacobs G, Das TK, Patterson PM, Li J, Sanchez L, Davis BH (2003) Appl Catal A Gen 247:335

    Article  CAS  Google Scholar 

  13. Jacobs G, Patterson PM, Das TK, Luo M, Davis BH (2004) Appl Catal A Gen 270:65

    Article  CAS  Google Scholar 

  14. van Steen E, Claeys M, Dry ME, van de Loosdrecht J, Viljoen EL, Visagie JL (2005) J Phys Chem B 109:3575

    Article  Google Scholar 

  15. Jacobs G, Ma W, Ji Y, Khalid S, Davis BH (2010) Advances in Fischer–Tropsch synthesis, catalysts and catalysis, Chap. 8. CRC Press/Taylor and Francis Group, Boca Raton, FL, pp 147–164

  16. Jacoby M (2001) Chem Eng News 79:33

    Google Scholar 

  17. Ressler T (1997) J de Physique IV 7:269

    CAS  Google Scholar 

  18. Ravel B (2001) J Synchrotron Radiat 8:314

    Article  CAS  Google Scholar 

  19. Rehr JJ, Zabinsky SI, Albers RC (1992) Phys Rev Lett 69:3397

    Article  CAS  Google Scholar 

  20. Newville M, Ravel B, Haskel D, Stern EA, Yacoby Y (2005) Physica B 208/209:154

    Article  Google Scholar 

  21. Wang W-J, Chen Y-W (1991) Appl Catal 77:223

    Article  CAS  Google Scholar 

  22. den Breejen JP, Sietsma JRA, Friedrich H, Bitter JH, de Jong KP (2010) J Catal 270:146

    Article  Google Scholar 

Download references

Acknowledgments

The work carried out at the CAER was supported in part by funding from a grant from NASA (#NNX07AB93A), as well as the Commonwealth of Kentucky. Argonne’s research was supported in part by the U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (NETL). The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, G., Ma, W., Davis, B.H. et al. Fischer–Tropsch Synthesis: TPR-XAFS Analysis of Co/Silica and Co/Alumina Catalysts Comparing a Novel NO Calcination Method with Conventional Air Calcination. Catal Lett 140, 106–115 (2010). https://doi.org/10.1007/s10562-010-0453-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0453-6

Keywords

Navigation