Skip to main content
Log in

Nature of CO and NO Interactions with Pd-H-ZSM-5 Catalyst: A Comparative Study of DFT-Based Cluster and ONIOM Methods

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The binding of CO and NO to Pd atom supported on H-ZSM-5 zeolite have been studied with density functional theory using both simple cluster and embedded cluster models. The adsorption energies of CO and NO are found to be 2–3 kcal/mol stronger in embedded cluster approach than those that are in cluster model. We discuss trends in bond lengths, adsorption energies and vibrational frequencies of the adsorbed species with relation to the magnitude of charges using NPA scheme of NBO method.

Graphical Abstract

Density functional theory calculations have shown that CO gets adsorbed linearly on Pd-H-ZSM-5 through the σ donation and π back-donation mechanism whereas adsorption of NO molecule takes place in a bent configuration via a covalent σ bond formed between the NO 2π* electron and metal dσ electron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blomsma E, Martens JA, Jacobs PA (1997) Stud Surf Sci Catal B 105:909

    Article  Google Scholar 

  2. Dong J-L, Zhu J-H, Xu Q-H (1994) Appl Catal A 112:105

    Article  CAS  Google Scholar 

  3. Silva JM, Ribeiro MF, Ribeiro FR, Benazzi E, Guisnet M (1995) Appl Catal A 125:15

    Article  CAS  Google Scholar 

  4. Galperin LB, Bricker JC, Holmgren JR (2003) Appl Catal A 239:297

    Article  CAS  Google Scholar 

  5. Li Y, Armor JN (1992) Air Products and Chemicals Inc, US Pat 5149512

  6. Stokes LS, Murphy DM, Farley RD, Rowlands CC, Bailey S (1999) Phys Chem Chem Phys 1:621

    Article  CAS  Google Scholar 

  7. Okumura K, Amano J, Yasunobu N, Niwa M (2000) J Phys Chem B 104:1050

    Article  CAS  Google Scholar 

  8. Rice MJ, Chakraborty AK, Bell AT (2000) J Phys Chem B 104:9987

    Article  CAS  Google Scholar 

  9. Pommier B, Gelin P (2001) Phys Chem Chem Phys 3:1138

    Article  CAS  Google Scholar 

  10. Okumura K, Niwa M (2002) Catal Surv Jpn 5:121

    Article  CAS  Google Scholar 

  11. Chakarova K, Ivanova E, Hadjiivanov K, Klissurski D, Knözinger H (2004) Phys Chem Chem Phys 6:3702

    Article  CAS  Google Scholar 

  12. Okumura K, Matsumoto S, Nishiaki N, Niwa M (2003) Appl Catal B 40:151

    Article  CAS  Google Scholar 

  13. Liu C-J, Yu K-L, Zhang Y-P, Zhu X-L, He F, Eliasson B (2004) Appl Catal B 47:95

    Article  CAS  Google Scholar 

  14. Shi C-K, Yang L-F, Wang Z-C, He XE, Cai J-X, Li G, Wang X-S (2003) Appl Catal A 243:379

    Article  CAS  Google Scholar 

  15. Wen B, Sun Q, Sachtler WMH (2001) J Catal 204:314

    Article  CAS  Google Scholar 

  16. Dams M, Drijkoningen L, Pauwels B, Tendeloo GV, De Vos DE, Jacobs PA (2002) J Catal 209:225

    Article  CAS  Google Scholar 

  17. Nishizaka Y, Misono M (1994) Chem Lett 23:2237

    Article  Google Scholar 

  18. Berthomieu D, Ducéré J-M, Goursot A (2002) J Phys Chem B 106:7483

    Article  CAS  Google Scholar 

  19. Barone G, Armata N, Prestianni A, Rubino T, Duca D, Murzin DYu (2009) J Chem Theory Comput 5:1274

    Article  CAS  Google Scholar 

  20. Grybos R, Hafner J, Benco L, Raybaud P (2008) J Phys Chem C 112:12349

    Article  CAS  Google Scholar 

  21. Sierraalta A, Alejos P, Ehrmann E, Rodriguez LJ, Ferrer Y (2009) J Mol Catal A Chem 301:61

    Article  CAS  Google Scholar 

  22. Treesukol P, Srisuk K, Limtrakul J, Truong TN (2005) J Phys Chem B 109:11940

    Article  CAS  Google Scholar 

  23. Grybos R, Benco L, Bučko T, Hafner J (2009) J Chem Phys 130:104503

    Article  Google Scholar 

  24. Harmsen R, Bates S, van Santen RA (1997) Faraday Discuss 106:443

    Article  CAS  Google Scholar 

  25. Lobree LJ, Aylor AW, Reimer JA, Bell AT (1999) J Catal 181:189

    Article  CAS  Google Scholar 

  26. Aylor AW, Lobree LJ, Reimer JA, Bell AT (1997) J Catal 172:453

    Article  CAS  Google Scholar 

  27. Chatterjee A, Vetrivel R (1994) Microporous Mater 3:211

    Article  CAS  Google Scholar 

  28. Material Studio, Version 3.2 (2005) Accelrys Software, Inc.: San Diego, CA

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision A.1. Gaussian, Inc., Pittsburgh

  30. Sirijaraensre J, Limtrakul J (2009) Phys Chem Chem Phys 11:578

    Article  CAS  Google Scholar 

  31. Dapprich S, Komaromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct (THEOCHEM) 461:1

    Article  Google Scholar 

  32. Joshi AM, Delgass WN, Thomson KT (2007) J Phys Chem C 111:11888

    Article  CAS  Google Scholar 

  33. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  34. Reed AE, Weinhold F, Curtiss LA, Pochatko DJ (1986) J Chem Phys 84:5687

    Article  CAS  Google Scholar 

  35. Stakheev AY, Shpiro ES, Jaeger NI, Schulz-Ekloff G (1995) Catal Lett 34:293

    Article  CAS  Google Scholar 

  36. Zhou M, Andrews L (2000) J Phys Chem A 104:3915

    Article  CAS  Google Scholar 

  37. Tracy JC, Palmberg PW (1969) J Chem Phys 51:4852

    Article  CAS  Google Scholar 

  38. Rades R, Borovkov V Yu, Kazansky VB, Polisset-Thfoin M, Fraissard J (1996) J Phys Chem 100:16238

    Article  CAS  Google Scholar 

  39. Treesukol P, Limtrakul J, Truong TN (2001) J Phys Chem B 105:2421

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Department of Science and Technology, New Delhi. B. Kalita thanks the Council of Scientific and Industrial Research, New Delhi, for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Deka.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 49 kb)

Supplementary material 2 (DOC 3753 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalita, B., Deka, R.C. Nature of CO and NO Interactions with Pd-H-ZSM-5 Catalyst: A Comparative Study of DFT-Based Cluster and ONIOM Methods. Catal Lett 140, 205–211 (2010). https://doi.org/10.1007/s10562-010-0439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0439-4

Keywords

Navigation