Skip to main content

Advertisement

Log in

Methane Steam Reforming Kinetics for a Rhodium-Based Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Methane steam reforming is the key reaction to produce synthesis gas and hydrogen at the industrial scale. Here the kinetics of methane steam reforming over a rhodium-based catalyst is investigated in the temperature range 500–800 °C and as a function of CH4, H2O and H2 partial pressures. The methane steam reforming reaction cannot be modeled without taking CO and H coverages into account. This is especially important at low temperatures and higher partial pressures of CO and H2. For methane CO2 reforming experiments, it is also necessary to consider the repulsive interaction of CO that lowers the adsorption energy at high CO coverage. The CO–CO interaction is supported by comparison with fundamental surface science studies.

Graphical Abstract

Experimental results (points), Langmuir–Hinshelwood kinetic modeling (lines) and descriptive power law constants for the methane dependency in the methane steam reforming reaction on a Rh catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rostrup-Nielsen JR (2000) Catal Today 63:159–164

    Article  CAS  Google Scholar 

  2. Rostrup-Nielsen JR, Sehested J, Nørskov JK (2002) Adv Catal 47:65–139

    Article  CAS  Google Scholar 

  3. Rostrup-Nielsen JR (1984) In: Anderson JR, Boudart M (eds) Catalysis—science and technology. Springer, Berlin

  4. Rostrup-Nielsen JR, Hansen J-HB (1993) J Catal 144:38–49

    Article  CAS  Google Scholar 

  5. Kikuchi E, Tanaka S, Yamazaki Y, Morita Y (1974) Bull Jpn Pet Inst 95–98

  6. Qin D, Lapszewicz J (1994) Catal Today 21:551–560

    Article  CAS  Google Scholar 

  7. Rostrup-Nielsen JR (1973) J Catal 31:173–199

    Article  CAS  Google Scholar 

  8. Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen JR, Chorkendorff I, Sehested J, Nørskov JK (2008) J Catal 259:147–160

    Article  CAS  Google Scholar 

  9. Wei JM, Iglesia E (2004) J Catal 224:370–383

    Article  CAS  Google Scholar 

  10. Jakobsen JG, Jørgensen TL, Chorkendorff I, Sehested J (2010) Appl Catal A 377:158–166

    Article  CAS  Google Scholar 

  11. Bhat RN, Sachtler WMH (1997) Appl Catal A 150:279–296

    Article  CAS  Google Scholar 

  12. Wang HY, Ruckenstein E (2000) Appl Catal A 204:143–152

    Article  CAS  Google Scholar 

  13. Hei MJ, Chen HB, Yi J, Lin YJ, Lin YZ, Wei G, Liao DW (1998) Surf Sci 417:82–96

    Article  CAS  Google Scholar 

  14. Munera JF, Cornaglia LM, Cesar DV, Schmal M, Lombardo EA (2007) Ind Eng Chem Res 46:7543–7549

    Article  CAS  Google Scholar 

  15. Munera JF, Irusta S, Cornaglia LM, Lombardo EA, Cesar DV, Schmal M (2007) J Catal 245:25–34

    Article  CAS  Google Scholar 

  16. Bradford MCJ, Vannice MA (1999) Catal Rev Sci Eng 41:1–42

    Article  CAS  Google Scholar 

  17. Graf PO, Mojet BL, van Ommen JG, Lefferts L (2007) Appl Catal A 332:310–317

    Article  CAS  Google Scholar 

  18. Wei JM, Iglesia E (2004) J Catal 225:116–127

    Article  CAS  Google Scholar 

  19. Maestri M, Vlachos DG, Beretta A, Groppi G, Tronconi E (2008) J Catal 259:211–222

    Article  CAS  Google Scholar 

  20. Beretta A, Bruno T, Groppi G, Tavazzi I, Forzatti P (2007) Appl Catal B 70:515–524

    Article  CAS  Google Scholar 

  21. Beretta A, Donazzi A, Groppi G, Forzattl P, Dal Santo V, Sordelli L, De Grandi V, Psaro R (2008) Appl Catal B 83:96–109

    Article  CAS  Google Scholar 

  22. Hickman DA, Schmidt LD (1993) AIChE J 39:1164–1177

    Article  CAS  Google Scholar 

  23. Mhadeshwar AB, Vlachos DG (2005) J Phys Chem B 109:16819–16835

    Article  CAS  Google Scholar 

  24. Schwiedernoch R, Tischer S, Correa C, Deutschmann O (2003) Chem Eng Sci 58:633–642

    Article  CAS  Google Scholar 

  25. Tavazzi I, Beretta A, Groppi G, Forzatti P (2006) J Catal 241:1–13

    Article  CAS  Google Scholar 

  26. Dulaurent O, Chandes K, Bouly C, Bianchi D (2000) J Catal 192:262–272

    Article  CAS  Google Scholar 

  27. Belton DN, Schmieg SJ (1988) Surf Sci 202:238–254

    Article  CAS  Google Scholar 

  28. Maroto-Valiente A, Rodriguez-Ramos I, Guerrero-Ruiz A (2004) Catal Today 93–5:567–574

    Article  Google Scholar 

  29. Pfnur H, Feulner P, Menzel D (1983) J Chem Phys 79:4613–4623

    Article  Google Scholar 

  30. Jansen MMM, Gracia J, Nieuwenhuys BE, Niemantsverdriet JW (2009) Phys Chem Chem Phys 11:10009–10016

    Article  CAS  Google Scholar 

  31. German ED, Sheintuch M (2008) J Phys Chem C 112:14377–14384

    Article  CAS  Google Scholar 

  32. Faglioni F, Goddard WA (2005) J Chem Phys 122:14704

    Article  Google Scholar 

Download references

Acknowledgements

Our work has been financially supported by the Danish Agency for Science Technology and Innovation. CINF is funded by the Danish National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Geest Jakobsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakobsen, J.G., Jakobsen, M., Chorkendorff, I. et al. Methane Steam Reforming Kinetics for a Rhodium-Based Catalyst. Catal Lett 140, 90–97 (2010). https://doi.org/10.1007/s10562-010-0436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0436-7

Keywords

Navigation