Skip to main content
Log in

Location and Dynamics of CO Co-ordination on Ru Nanoparticles: A Solid State NMR Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The coordination of CO at the surface of very small ruthenium nanoparticles has been investigated by IR and solid state NMR spectroscopies. Two sets of ruthenium nanoparticles stabilized either by a polymer (polyvinylpyrrolidone; PVP) or a ligand (bisdiphenylphosphinobutane; dppb) have been studied in order to evidence any influence of the stabilizer on the location and dynamics of CO molecules at the particles surface. It was found that CO groups are mobile on the surface of the nanoparticles even in the solid state and that bulky ancillary ligands such as dppb may slow down the fluxionality of CO and prevent exchange at certain positions.

Graphical Abstract

Solid state NMR studies evidence the location and mobility of CO adsorbed at the surface of nanoparticles of ruthenium stabilized by PVP whereas nanoparticles of same size but stabilized by a diphosphine ligand do not show such a mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589

    Article  CAS  Google Scholar 

  2. Humblot F, Didillon D, Lepeltier F, Candy JP, Corker J, Clause O, Bayard F, Basset JM (1998) J Am Chem Soc 120:137

    Article  CAS  Google Scholar 

  3. Blaser HU, Studer M (2007) Acc Chem Res 40:1348

    Article  CAS  Google Scholar 

  4. Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863

    Article  CAS  Google Scholar 

  5. Jansat S, Gómez M, Philippot K, Muller G, Guiu E, Claver C, Castillón S, Chaudret B (2004) J Am Chem Soc 126:1592

    Article  CAS  Google Scholar 

  6. Comprehensive Organometallic Chemistry III Mingos MP and Crabtree RH Editors in chief, Elsevier, Amsterdam, 2007

  7. Duncan TM, Zilm KW, Hamilton DM, Root TW (1989) J Phys Chem 93:2583

    Article  CAS  Google Scholar 

  8. Bradley JS, Millar JM, Hill EW, Behal S, Chaudret B, Duteil A (1991) Faraday Discuss 92:255

    Article  CAS  Google Scholar 

  9. Terrill RH, Postlethwaite TA, Chen CH, Poon CD, Terzis A, Chen A, Hutchison JE, Clark MR, Wignall G, Londono JD, Superfine R, Falvo M, Johnson CS Jr, Samulski ET, Murray RW (1995) J Am Chem Soc 117:12537

    Article  CAS  Google Scholar 

  10. Badia A, Gao W, Singh S, Demers L, Cuccia L, Reven L (1996) Langmuir 12:1262

    Article  CAS  Google Scholar 

  11. Badia A, Cuccia L, Demers L, Morin F, Lennox RB (1997) J Am Chem Soc 119:2682

    Article  CAS  Google Scholar 

  12. Hostetler MJ, Wingate JE, Zhong CJ, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans MD, Murray RW (1998) Langmuir 14:17

    Article  CAS  Google Scholar 

  13. Pan C, Pelzer K, Philippot K, Chaudret B, Dassenoy F, Lecante P, Casanove MJ (2001) J Am Chem Soc 123:7584

    Article  CAS  Google Scholar 

  14. Ramirez E, Jansat S, Philippot K, Lecante P, Gomez M, Masdeu-Bulto AM, Chaudret B (2004) J Organomet Chem 689:4601

    Article  CAS  Google Scholar 

  15. Tedsree K, Kong ATS, Tsang SC (2009) Angew Chem Int Ed 48:1443

    Article  CAS  Google Scholar 

  16. Organometallic Derived-I: Metals,Colloids and Nanoparticles, Philippot K and Chaudret B, in Comprehensive Organometallic Chemistry III, Crabtree RH & Mingos MP (Eds-in-Chief), Elsevier, Volume 12—Applications III: Functional Materials, Environmental and Biological Applications, Dermot O’Hare (Volume Ed.), 2007, Chapter 12-03, 71

  17. Bradley JS, Millar JM, Hill EW, Behal S (1991) J Catal 129:530

    Article  CAS  Google Scholar 

  18. Bradley JS, Millar JM, Hill EW (1991) J Am Chem Soc 113:4016

    Article  CAS  Google Scholar 

  19. Bradley JS, Hill EW, Behal S, Klein C, Chaudret B, Duteil A (1992) Chem Mater 4:1234

    Article  CAS  Google Scholar 

  20. Pery T, Pelzer K, Buntkowsky G, Philippot K, Limbach HH, Chaudret B (2005) Chem Phys Chem 6:605

    CAS  Google Scholar 

  21. García-Antón J, Axet, Jansat S, Philippot K, Chaudret B, Pery T, Buntkowsky G, Limbach HH (2008) Angew Chem Int Ed 47:2074

    Article  Google Scholar 

  22. Truflandier LA, Del Rosal I, Chaudret B, Poteau R, Gerber IC (2009) Chem Phys Chem 10:2939

    CAS  Google Scholar 

  23. Dassenoy F, Casanove MJ, Lecante P, Pan C, Philippot K, Chaudret B (2001) Phys Rev B B 63:2354071

    Google Scholar 

  24. Duteil A, Quéau R, Chaudret B, Mazel R, Roucau C (1993) Chem Mater 5:341

    Article  CAS  Google Scholar 

  25. Eischens RP, Pliskin WA (1958) Adv Catal 10:1

    Article  CAS  Google Scholar 

  26. Bradshaw AM, Hoffmann FM (1978) Surf Sci 72:513

    Article  CAS  Google Scholar 

  27. Schmid G (ed.) (2004) Nanoparticles. Wiley-VCH, Weinheim

Download references

Acknowledgments

The authors are grateful to Y. Coppel and S. Maynadié-Parres for gas phase and MAS NMR analyses. The authors thank CNRS and l’Agence Nationale de la Recherche for funding (ANR-08-BLAN0010-03 SIDERUS project). F. N.V. is grateful to the Ministerio de Ciencia e Innovación from Spanish government for a postdoctoral fellowship (QMC2008-0614).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Chaudret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novio, F., Philippot, K. & Chaudret, B. Location and Dynamics of CO Co-ordination on Ru Nanoparticles: A Solid State NMR Study. Catal Lett 140, 1–7 (2010). https://doi.org/10.1007/s10562-010-0428-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0428-7

Keywords

Navigation