Skip to main content
Log in

Oxidation of Oxygenated Volatile Organic Compound Over Monometallic and Bimetallic Ru–Au Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Temperature-programmed reduction (TPR) and temperature-programmed desorption (TPD) of methanol and oxygen were used to probe the surface properties, relating to the oxidation reaction of methanol (a representative of oxygenated volatile organic compounds) over a series of monometallic and bimetallic Ru–Au catalysts. The relative amounts of ruthenium and gold in these bimetallic catalysts were found to strongly affect their surface characteristics (TPR and TPD profiles, BET surface areas, surface morphologies observed in SEM micrographs, and XRD patterns) and methanol oxidation activity. Although ruthenium and gold were immiscible in their bulk state, the TPR profiles, SEM micrographs, and XRD patterns provided evidence for the interactions between ruthenium and gold in the bimetallic catalysts, especially the 3.32 wt% Ru–0.61 wt% Au/SiO2 exhibiting the highest methanol oxidation activity. After the oxidation reaction, even though Ru was oxidized to RuO2, the interaction between ruthenium and gold on silica still remained the same. The support material was also found to affect both the catalyst characteristics and the methanol oxidation activity. No bimetallic clusters were observed on the Ru–Au catalysts supported on alumina. Various products, including CO2, were found when using the catalysts supported on alumina, causing a higher methanol conversion than the catalysts supported on silica.

Graphical Abstract

The objective of the present work was to develop comprehensive information for the interactions of the oxygenated VOC with mono- and bimetallic Ru–Au catalyst surfaces as a function of temperature and gold content. The outcomes of this work directly provide a better understanding of the catalytic oxidation of oxygenated VOCs on the bimetallic Ru–Au catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sinfelt JH (1983) Bimetallic catalysts: discoveries, concept, and applications. Wiley, New York

    Google Scholar 

  2. Kelzenberg JC, King TS (1990) J Catal 126:421–433

    Article  CAS  Google Scholar 

  3. Narayan RL, King TS (1998) Thermochim Acta 312:105–114

    Article  CAS  Google Scholar 

  4. Savargaonkar N, Narayan RL, Prusk M, Uner DO, King TS (1998) J Catal 178:26–33

    Article  CAS  Google Scholar 

  5. Smale MK, King TS (1989) J Catal 119:441–450

    Article  CAS  Google Scholar 

  6. Smale MK, King TS (1990) J Catal 125:335–352

    Article  CAS  Google Scholar 

  7. Wu X, Gerstein BC, King TS (1990) J Catal 123:43–59

    Article  CAS  Google Scholar 

  8. Hu SC, Chen YW (2001) Ind Eng Chem Res 40:6099–6104

    Article  CAS  Google Scholar 

  9. Galvagno S, Schwank J, Parravano G, Garbassi F, Marzi A, Tauszik GR (1981) J Catal 69:283–291

    Article  CAS  Google Scholar 

  10. Datye AK, Allard LF, Schwank J (1984) Anal Elect Microsc 205–208

  11. Datye AK, Schwank J (1985) J Catal 93:256–269

    Article  CAS  Google Scholar 

  12. Tauszik GR, Leofanti G, Galvagno S (1984) J Mol Catal 25:357–366

    Article  CAS  Google Scholar 

  13. Venugopal A, Aluha J, Mogano D, Scurrell MS (2003) Appl Catal A 245:149–158

    Article  CAS  Google Scholar 

  14. Venugopal A, Aluha J, Scurrell MS (2003) Catal Lett 90:1–6

    Article  CAS  Google Scholar 

  15. Maris EP, Ketchie WC, Muraya M, Davis RJ (2007) J Catal 251:281–294

    Article  CAS  Google Scholar 

  16. Chang FW, Roselin LS, Ou TC (2008) Appl Catal A 334:147–155

    Article  CAS  Google Scholar 

  17. Croy JR, Mostafa S, Hickman L, Heinrich H, Cuenya BR (2008) Appl Catal A 350:207–216

    Article  CAS  Google Scholar 

  18. Shastri AG, Schwank J (1985) J Catal 95:271–283

    Article  CAS  Google Scholar 

  19. Cordi EM, Falconer JL (1996) J Catal 162:104–117

    Article  CAS  Google Scholar 

  20. Choi KH, Coh BY, Lee HI (1998) Catal Today 44:205–213

    Article  CAS  Google Scholar 

  21. Ozkan US, Keller RF, Moetezuma E (1990) Ind Eng Chem Res 29:1136–1142

    Article  CAS  Google Scholar 

  22. Yang TJ, Lunsford JH (1987) J Catal 103:55–64

    Article  CAS  Google Scholar 

  23. Elmi AS, Tronconi E, Cristiani C, Martin JPG, Forzatti P, Busca G (1989) Ind Eng Chem Res 28:387–393

    Article  CAS  Google Scholar 

  24. McCabe RW, Mitchell PJ (1986) Appl Catal 27:83–98

    Article  CAS  Google Scholar 

  25. Chantaravitoon P, Chavadej S, Schwank J (2004) Chem Eng J 97:161–171

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Sustainable Petroleum and Petrochemicals Research Unit, Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Thailand; and the Petrochemical and Environmental Catalysis Research Unit under the Ratchadapisek Somphot Endowment Fund, Chulalongkorn University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumaeth Chavadej.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreethawong, T., Sukjit, D., Ouraipryvan, P. et al. Oxidation of Oxygenated Volatile Organic Compound Over Monometallic and Bimetallic Ru–Au Catalysts. Catal Lett 138, 160–170 (2010). https://doi.org/10.1007/s10562-010-0395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0395-z

Keywords

Navigation