Skip to main content

Kinetic Parameters for the Elementary Steps in the Palladium-Catalyzed Synthesis of Vinyl Acetate

Abstract

The kinetics of the reaction between gas-phase ethylene and adsorbed acetate species to form vinyl acetate monomer (VAM) on a Pd(111) surface are measured using infrared spectroscopy to monitor the rate of acetate removal, as well as the rates of VAM and ethylidyne formation, at various temperatures. The results are fit using a kinetic model first proposed by Samanos in which ethylene reacts with acetate species to form an acetoxyethyl intermediate that forms VAM via β-hydride elimination. The results of the kinetic model agree well with the experimental data and Arrhenius plots of the rate constants yield activation energies that are in good agreement with those predicted by density functional theory (DFT) calculations. DFT also predicts that the reaction activation energies should depend on the acetate coverage while the experimental data can be fit by constant values of the rate constants, suggesting that the reaction activation energies are similar for a reaction center surrounded either by acetate species, ethylidynes, or a combination of both. Finally, the kinetic parameters for VAM desorption are in good agreement with the experimental peak temperature measured by temperature-programmed desorption for VAM desorbing from an ethylidyne-covered surface.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Smith WE, Gerhart RJ (1967) U.S. Patent number 3658888

  2. Stacchiola D, Calaza F, Burkholder L, Tysoe WT (2004) J Am Chem Soc 2004:15384

    Article  CAS  Google Scholar 

  3. Stacchiola D, Calaza F, Burkholder L, Schwabacher AW, Neurock M, Tysoe WT (2005) Angew Chem 44:4572

    Article  CAS  Google Scholar 

  4. Crathorne EA, MacGowan D, Mouris SR, Rawlinson AP (1994) J Catal 149:54

    Article  Google Scholar 

  5. Nakamura S, Yasui T (1970) J Catal 17:366

    Article  CAS  Google Scholar 

  6. Samanos B, Boutry P, Montarnal R (1971) J Catal 23:19

    Article  CAS  Google Scholar 

  7. Provine WD, Mills P, Lerov JJ (1996) Stud Surf Sci Catal 101:191

    Article  CAS  Google Scholar 

  8. van Santen RA, Neurock M (2006) Molecular heterogeneous catalysis: a conceptual and computational approach. Wiley, New York

    Book  Google Scholar 

  9. Calaza F, Stacchiola D, Neurock M, Tysoe WT (2010) J Am Chem Soc 132:2202

    Article  CAS  Google Scholar 

  10. Chen MS, Kumar D, Yi CW, Goodman DW (2005) Science 310:291

    Article  CAS  Google Scholar 

  11. Han PS, Axnanda S, Lyubinetsky I, Goodman DW (2007) J Am Chem Soc 129:14355

    Article  CAS  Google Scholar 

  12. Kumar D, Chen MS, Goodman DW (2007) Catal Today 123:77

    Article  CAS  Google Scholar 

  13. Kaltchev M, Thompson AW, Tysoe WT (1997) Surf Sci 391:45

    Article  Google Scholar 

  14. Kesmodel LL, Dubois L, Somorjai GA (1979) J Chem Phys 70:2180

    Article  CAS  Google Scholar 

  15. Skinner P, Howard MW, Oxton IA, Kettle SFA, Powell DB, Sheppard NJ (1981) J Chem Soc Faraday Trans 2(77):1203

    Google Scholar 

  16. Kesmodel LL, Gates JA (1981) Surf Sci 111:L747

    Article  CAS  Google Scholar 

  17. Gates JA, Kesmodel LL (1983) Surf Sci 124:68

    Article  CAS  Google Scholar 

  18. Kaltchev M, Tysoe WT (2000) J Catal 196:40

    Article  CAS  Google Scholar 

  19. Stacchiola D, Tysoe WT (2009) J Phys Chem C 113:8000

    Article  CAS  Google Scholar 

  20. Stacchiola D, Tysoe WT (2002) Surf Sci 513:L413

    Article  Google Scholar 

  21. Calaza F, Stacchiola D, Neurock M, Tysoe WT (2005) Surf Sci 598:263

    Article  CAS  Google Scholar 

  22. Li Z, Calaza F, Plaisance C, Neurock M, Tysoe WT (2009) J Phys Chem C 113:971

    Article  CAS  Google Scholar 

  23. James J, Saldin DK, Zheng T, Tysoe WT, Sholl DS (2005) Catal Today 105:74

    Article  CAS  Google Scholar 

  24. Hansen E, Neurock M (2001) J Phys Chem B 105:9218

    Article  CAS  Google Scholar 

  25. Masel RI (2001) Chemical kinetics and catalysis. Wiley, New York

    Google Scholar 

  26. Masel RI (1996) Principles of adsorption and reaction on solid surfaces. Wiley, New York

    Google Scholar 

  27. Redhead PA (1962) Vacuum 12:203

    Article  CAS  Google Scholar 

  28. Han YF, Kumar D, Sivadinarayana S, Goodman DW (2004) J Catal 224:60

    Article  CAS  Google Scholar 

  29. Guo X-C, Madix RJ (1996) Catal Lett 39:1

    Article  CAS  Google Scholar 

  30. Harris TD, Madix RJ (1998) J Catal 178:520

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support of this work by the U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences, under Grant No. DE-FG02-92ER14289.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred T. Tysoe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Calaza, F., Stacchiola, D., Neurock, M. et al. Kinetic Parameters for the Elementary Steps in the Palladium-Catalyzed Synthesis of Vinyl Acetate. Catal Lett 138, 135–142 (2010). https://doi.org/10.1007/s10562-010-0386-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0386-0

Keywords

  • Vinyl acetate synthesis
  • Density functional theory
  • Pd(111)
  • Reaction kinetics