Skip to main content
Log in

The Effect of Support Acidity on Olefin Metathesis over Heterogeneous Mo/HBeta Catalyst: A DFT Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of support acidity on the cross-metathesis of ethylene and 2-butylene to propylene over heterogeneous Mo/HBeta catalyst was studied by density functional theory (DFT) calculations. The zeolite acidity was mimicked by changing the terminating Si–H bond lengths. Both of the initiating formation and propagating processes of Mo-carbene were investigated. It is found that there is a correlation between the zeolite acidity and the activation barrier. The influence of acidity on the initial Mo-carbene formation process is greater than that on the next process catalyzed by this active site. Theoretical calculations reveal that the heterogeneous catalyst with more acidic support could have better olefin metathesis activities, which is consistent with the experimental findings in the literature.

Graphical Abstract

DFT calculations indicate that the olefin metathesis could occur much easier on heterogeneous catalyst with more acidic support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kiricsi I, Flego C, Pazzuconi G, Parker WOJ, Millini R, Perego C, Bellussi G (1994) J Phys Chem 98:4627

    Article  CAS  Google Scholar 

  2. Jones CW, Zones SI, Davis ME (1999) Appl Catal A 181:289

    Article  CAS  Google Scholar 

  3. Liu SL, Huang SJ, Xin WJ, Bai J, Xie SJ, Xu LY (2004) Catal Today 93–95:471

    Article  Google Scholar 

  4. Li XJ, Zhang WP, Liu SL, Xu LY, Han XW, Bao XH (2007) J Catal 250:55

    Article  CAS  Google Scholar 

  5. Handzlik J, Ogonowski J, Stoch J, Mikołajczyk M (2005) Catal Lett 101:65

    Article  CAS  Google Scholar 

  6. Aritani H, Fukuda O, Yamamoto T, Tanaka T, Imamura S (2000) Chem Lett 1:66

    Article  Google Scholar 

  7. Mol JC (1999) Catal Today 51:289

    Article  CAS  Google Scholar 

  8. Farneth WE, Gorte RJ (1995) Chem Rev 95:615

    Article  CAS  Google Scholar 

  9. Bell AT, Pines A (1994) NMR techniques in catalysis. Dekker

  10. Klinowski J (1991) Chem Rev 91:1459

    Article  CAS  Google Scholar 

  11. Li XJ, Zhang WP, Liu SL, Xu LY, Han XW, Bao XH (2008) J Phys Chem C 112:5955

    Article  CAS  Google Scholar 

  12. Zheng XB, Blowers P (2005) J Mol Catal A 229:77

    Article  CAS  Google Scholar 

  13. Newsam JM, Treacy MMJ, Koetsier WT, Gruyter CBD (1988) Proc R Soc London A 420:375

    Article  CAS  Google Scholar 

  14. Dedecek J, Capek L, Kaucky D, Sobalik Z, Wichterlova B (2002) J Catal 211:198

    Article  CAS  Google Scholar 

  15. Penzien J, Abraham A, van Bokhoven JA, Jentys A, Muller TE, Sievers C, Lercher JA (2004) J Phys Chem B 108:4116

    Article  CAS  Google Scholar 

  16. Guan J, Yang G, Zhou DH, Zhang WP, Liu XC, Han XW, Bao XH (2008) Catal Commun 9:2213

    Article  CAS  Google Scholar 

  17. Kramer GJ, Vansanten RA, Emeis CA, Nowak AK (1993) Nature 363:529

    Article  CAS  Google Scholar 

  18. Zheng AM, Zhang HL, Chen L, Yue Y, Ye CH, Deng F (2007) J Phys Chem B 111:3085

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM W, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.05. Gaussian, Inc., Pittsburgh PA

  20. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  22. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr G (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  24. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  25. Guan J, Yang G, Zhou DH, Zhang WP, Liu XC, Han XW, Bao XH (2009) J Mol Catal A 300:41

    Article  CAS  Google Scholar 

  26. Li X, Guan J, Zhou DH, Li GH, Han XW, Zhang WP, Bao XH (2009) J Mol Struct Theory 913:167

    Article  CAS  Google Scholar 

  27. Handzlik J, Ogonowski J (2001) J Mol Catal A 175:215

    Article  CAS  Google Scholar 

  28. Handzlik J (2005) J Phys Chem B 109:20794

    Article  CAS  Google Scholar 

  29. Handzlik J, Sautet P (2008) J Phys Chem C 112:14456

    Article  CAS  Google Scholar 

  30. Handzlik J (2010) J Mol Catal A 316:106

    Article  CAS  Google Scholar 

  31. Li XJ, Zhang WP, Li X, Liu SL, Huang HJ, Han XW, Xu LY, Bao XH (2009) J. Phys. Chem. C 113:8228

    Article  CAS  Google Scholar 

  32. Blaszkowski SR, Nascimento MAC, van Santen RA (1996) J Phys Chem 100:3463

    Article  CAS  Google Scholar 

  33. Nicholas JB (1999) Top Catal 9:181

    Article  CAS  Google Scholar 

  34. Salameh A, Coperet C, Basset JM, Bohm VPW, Roper M (2007) Adv Synth Catal 349:238

    Article  CAS  Google Scholar 

  35. Chauvin Y (2006) Angew Chem Int Ed 45:3741

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grants 20403017 and 20873140) and the Ministry of Science and Technology of China through the National Key Project of Fundamental Research (Grant No. 2009CB623507).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiping Zhang or Xinhe Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zheng, A., Guan, J. et al. The Effect of Support Acidity on Olefin Metathesis over Heterogeneous Mo/HBeta Catalyst: A DFT Study. Catal Lett 138, 116–123 (2010). https://doi.org/10.1007/s10562-010-0382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0382-4

Keywords

Navigation