Skip to main content
Log in

Production of CO-Free H2 by Formic Acid Decomposition over Mo2C/Carbon Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The vapor phase decomposition of formic acid was studied over supported Mo2C catalysts in a flow system. Mo2C deposited on silica is an effective catalyst for both the dehydrogenation of formic acid to yield H2 and CO2, and its dehydration to yield H2O and CO. The extent of the decomposition approached 100% at 623 K. Preparation of the Mo2C catalyst by the reaction of MoO3 with a multiwall carbon nanotube and carbon Norit, however, dramatically altered the product distribution. Dehydrogenation became the dominant process. In optimum case, the selectivity for H2, expressed in terms of the ratio CO2/CO + CO2, was 98–99%, even on total conversion at 423–473 K. The addition of water to the formic acid completely eliminated CO formation and furnished CO-free H2 on Mo2C/carbon catalysts at 373–473 K. Another feature of the Mo2C catalyst is its high stability. No changes in activity or selectivity were observed within 10 h.

Graphical Abstract

XP spectra of MoO3 in the course of the formation of 1%Mo2C on carbon Norit in the flow of H2 at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sandstede G, Veziroglu TN, Derive C, Pottier J (eds) (1972) Proceedings of the ninth world hydrogen energy conference, Paris, France, p 1745

  2. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuels 19:2098

    Article  CAS  Google Scholar 

  3. Solymosi F, Kutsán Gy, Erdőhelyi A (1991) Catal Lett 11:149

    Article  CAS  Google Scholar 

  4. Solymosi F, Erdőhelyi A, Cserényi J (1992) Catal Lett 16:399

    Article  CAS  Google Scholar 

  5. Solymosi F, Erdőhelyi A, Cserényi J, Felvégi A (1994) J Catal 147:272

    Article  CAS  Google Scholar 

  6. Belgued M, Amariglio H, Pareja P, Amariglio A, Sain-Just J (1992) Catal Today 13:437

    Article  CAS  Google Scholar 

  7. Koerts T, Deelen MJAG, van Santen RA (1992) J Catal 138:101

    Article  CAS  Google Scholar 

  8. Marino F, Boveri M, Baronetti G, Laborde M (2001) Int J Hydrog Energy 26:665

    Article  CAS  Google Scholar 

  9. Liguras DK, Kondarides DI, Verykos XE (2003) Appl Catal B Environ 43:345

    Article  CAS  Google Scholar 

  10. Perez-Hernández R, Gutierrez-Martinez A, Gutierez-Wing CE (2007) Int J Hydrog Energy 32:2888

    Article  Google Scholar 

  11. Choi JH, Jeong KJ, Dong Y, Han J, Lim TH, Lee JS, Sung YE (2006) J Power Sour 163:71 (and references therein)

    Article  CAS  Google Scholar 

  12. Fellay C, Dyson PJ, Laurenczy G (2008) Angew Chem Int Ed 47:3966

    Article  CAS  Google Scholar 

  13. Bond GC (1962) Catalysis by metals. Academic, London

    Google Scholar 

  14. Mars P, Scholten JJF, Zwietering P (1963) Adv Catal 14:35

    Article  CAS  Google Scholar 

  15. Szabó ZG, Solymosi F (1960) Acta Chim Hung 25:145

    Google Scholar 

  16. Szabó ZG, Solymosi F (1960) Acta Chim Hung 25:161

    Google Scholar 

  17. Trillo JM, Munuera G, Criado JM (1972) Catal Rev 7:51

    Article  CAS  Google Scholar 

  18. Solymosi F (1968) Catal Rev 1:233

    Article  Google Scholar 

  19. Szabó ZG, Solymosi F (1961) Actes Congr Intern Catalyse 2e, Paris, p 1627

  20. Iglesia E, Boudart M (1983) J Catal 81:214

    Article  CAS  Google Scholar 

  21. Solymosi F, Erdőhelyi A (1985) J Catal 91:327

    Article  CAS  Google Scholar 

  22. Fein DE, Wachs IE (2002) J Catal 210:241

    Article  CAS  Google Scholar 

  23. Columbia MR, Thiel PA (1994) J Electroanal Chem 369:1

    Article  CAS  Google Scholar 

  24. Solymosi F, Kiss J, Kovács I (1988) J Phys Chem 92:796

    Article  CAS  Google Scholar 

  25. Koós Á, Barthos R, Solymosi F (2008) J Phys Chem C 112:2607 (and references therein)

    Article  Google Scholar 

  26. Kukovecz A, Kanyo T, Konya Z, Kiricsi I (2005) Carbon 43:994

    Article  CAS  Google Scholar 

  27. Kecskeméti A, Barthos R, Solymosi F (2008) J Catal 258:111 (and references therein)

    Article  Google Scholar 

  28. Lee JS, Oyama ST, Boudart M (1987) J Catal 106:125

    Article  CAS  Google Scholar 

  29. Bouchy C, Pham-Huu C, Heinrich B, Derouane EC, Derouane-Abd Hamid SB, Ledoux MJ (2001) Appl Catal A Gen 215:175

    Article  CAS  Google Scholar 

  30. Bouchy C, Pham-Huu C, Heinrich B, Chaumont C, Ledoux MJ (2000) J Catal 190:92

    Article  CAS  Google Scholar 

  31. Solymosi F, Bugyi L (2000) Catal Lett 66:227

    Article  CAS  Google Scholar 

  32. Bugyi L, Oszkó A, Solymosi F (2000) Surf Sci 461:177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant OTKA under contact number NI 69327 and K 81517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frigyes Solymosi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koós, Á., Solymosi, F. Production of CO-Free H2 by Formic Acid Decomposition over Mo2C/Carbon Catalysts. Catal Lett 138, 23–27 (2010). https://doi.org/10.1007/s10562-010-0375-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0375-3

Keywords

Navigation