Skip to main content
Log in

Nano-MgO: An Efficient Catalyst for the Synthesis of Formamides from Amines and Formic Acid Under MWI

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Nano-MgO a basic catalyst was prepared by solution combustion technique. It was characterized by powder XRD, SEM, BET and TEM analyses. It was used as a catalyst for the study of microwave-assisted N-formylation of various aromatic and alkyl amines with formic acid under solvent-free conditions. Nano-MgO showed excellent catalytic properties and the reactions went to completion, within 1–2 min to give products in high yield (90–98%). The catalyst is recoverable quantitatively and re-cycled with almost consistent activity. This new nano catalyst has the advantages of higher yield, lower cost, reduced environmental hazards, and the procedure is highly convenient.

Graphical Abstract

Nano-MgO was prepared and characterized by PXRD, SEM, BET and TEM analyses. It was used for the study of microwave-assisted N-formylation of various amines with formic acid under solvent-free condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Green TW, Wuts PGM (1999) In: Protective groups in organic synthesis, vol 3. Wiley-Interscience, New York

  2. Waki J, Meienhofer J (1977) J Org Chem 42:2019

    Article  CAS  Google Scholar 

  3. Schöllkopf U (1977) Angew Chem Int Ed Engl 16:339

    Article  Google Scholar 

  4. Effenberger F, Eichhorn J (1997) Tetrahedron Asymmetr 8:469

    Article  CAS  Google Scholar 

  5. Han Y, Cai L (1997) Tetrahedron Lett 38:5423

    Article  CAS  Google Scholar 

  6. Jackson A, Meth-Cohn O (1995) J Chem Soc Chem Commun 13:1319

    Article  Google Scholar 

  7. Chen BC, Bednarz MS, Zhao R, Sundeen JE, Chen P, Shen Z, Skoumbourdis AP, Barrish JC (2000) Tetrahedron Lett 41:5453

    Article  CAS  Google Scholar 

  8. Kobayashi K, Nagato S, Kawakita M, Morikawa O, Konishi H (1995) Chem Lett 24:575

    Article  Google Scholar 

  9. Kakehi A, Ito S, Hayashi S, Fujii T (1995) Bull Chem Soc Jpn 68:3573

    Article  CAS  Google Scholar 

  10. Strazzolini P, Giumanini AG, Cauci S (1990) Tetrahedron 46:1081

    Article  CAS  Google Scholar 

  11. Blicke FF, Lu CJJ (1952) J Am Chem Soc 74:3933

    Article  Google Scholar 

  12. Chen FMF, Benoiton NL (1979) Synthesis 709

  13. Yale HL (1971) J Org Chem 36:3238

    Article  CAS  Google Scholar 

  14. Neveux M, Bruneau C, Dixneuf PH (1991) J Chem Soc Perkin Trans I 1197

  15. Duczek W, Deutsch J, Vieth S, Niclas HJ (1996) Synthesis 37

  16. Reddy PG, Kumar GDK, Baskaran S (2000) Tetrahedron Lett 41:9149

    Article  Google Scholar 

  17. Sambasivarao K, Manoranjan B, Priti K (2004) Tetrahedron Lett 45:7589

    Article  CAS  Google Scholar 

  18. Hill DR, Hasiao CN, Kurukulasuriya R, Wittenberger S (2002) Org Lett 4:111

    Article  CAS  Google Scholar 

  19. Szczepankiewicz W, Suwinski J (2000) Chem Heterocycl Compd 36:809

    Article  CAS  Google Scholar 

  20. Hosseini-Sarvari M, Sharghi H (2006) J Org Chem 71:6652

    Article  CAS  Google Scholar 

  21. Jung SH, Ahn JH, Park SK, Choi JK (2002) Bull Korean Chem Soc 23:149

    Article  CAS  Google Scholar 

  22. Biswanath D, Meddeboina K, Balasubramanayam P, Boyapati VD, Nandan KD (2008) Tetrahedron Lett 49:2225

    Article  CAS  Google Scholar 

  23. Akbari J, Hekmati M, Sheykhan M, Heydari A (2009) ARKIVOC xi:123

  24. Oliver Kappe C (2008) Chem Soc Rev 37:1127

    Article  CAS  Google Scholar 

  25. Bahnemann DW, Kholuiskaya SN, Dillert R, Kulak AI, Kokorin AI (2002) Appl Catal B 36:161

    Article  CAS  Google Scholar 

  26. Hosseini-Sarvari M, Sharghi H, Etemad S (2008) Helv Chim Acta 91:715

    Article  CAS  Google Scholar 

  27. Mills G, Hoffmann MR (1993) Environ Sci Technol 27:1681

    Article  CAS  Google Scholar 

  28. Reddy MBM, Pasha MA (in press) Synth Commun (LSYC-2009-2879)

  29. Pasha MA, Jayashankara VP (2007) Bioorg Med Chem Lett 17:621

    Article  CAS  Google Scholar 

  30. Pasha MA, Jayashankara VP (2005) Ultrason Sonochem 12:433

    Article  CAS  Google Scholar 

  31. Rama K, Pasha MA (2005) Ultrason Sonochem 12:437

    Article  CAS  Google Scholar 

  32. Rama K, Pasha MA (2000) Tetrahedron Lett 41:1073

    Article  CAS  Google Scholar 

  33. Nagaraja D, Pasha MA (1999) Tetrahedron Lett 40:7855

    Article  CAS  Google Scholar 

  34. Nagappa B, Chandrappa GT (2007) Microporous Mesoporous Mater 106:212

    Article  CAS  Google Scholar 

  35. Klug H, Alexander L (1974) In: X-ray diffraction procedures for polycrystalline and amorphous materials, vol 4. Wiley, New York, p. 618

Download references

Acknowledgements

G.T.C. gratefully acknowledges the financial support from the Department of Science and Technology, NSTI Phase-IV, Government of India, New Delhi. We also acknowledge the help of Prof. Jai Prakash, Bangalore Institute of Technology, for providing surface area measurement facility and MW reactor. One of the authors M.S. Reddy also wishes to thank Dr. D.N. Sathyanarayana, Professor (Retired) Department of Inorganic and Physical Chemistry, I. I. Sc, Bengaluru, India, for constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pasha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, M.B.M., Ashoka, S., Chandrappa, G.T. et al. Nano-MgO: An Efficient Catalyst for the Synthesis of Formamides from Amines and Formic Acid Under MWI. Catal Lett 138, 82–87 (2010). https://doi.org/10.1007/s10562-010-0372-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0372-6

Keywords

Navigation