Catalysis Letters

, Volume 137, Issue 1–2, pp 1–7 | Cite as

Cycloaddition of CO2 to Epoxides Using a Highly Active Co(III) Complex of Tetraamidomacrocyclic Ligand

  • Anindya Ghosh
  • Punnamchandar Ramidi
  • Sharon Pulla
  • Shane Z. Sullivan
  • Samuel L. Collom
  • Yashraj Gartia
  • Pradip Munshi
  • Alexandru S. Biris
  • Bruce C. Noll
  • Brian C. Berry
Article

Abstract

Synthesis of various cyclic carbonates with yield up to 100% and turn over frequency (TOF) of 351 h−1 using CO2 and epoxides and a cobalt (III) complex of tetraamidomacrocyclic ligand is described. The catalyst was characterized by single crystal X-ray crystallography. A study of reaction conditions indicates that 2 MPa pressure of CO2 without any co-solvent is sufficient to achieve the desired product.

Graphic Abstract

Keywords

Cyclic carbonates CO2-epoxides Co(III)-Tetraamidomacrocyclic ligand catalyst Co-catalysts 

Supplementary material

10562_2010_325_MOESM1_ESM.doc (1.6 mb)
Supplementary material 1 (DOC 1638 kb)

References

  1. 1.
    Darensbourg DJ, Holtcamp MW (1996) Coord Chem Rev 153:155CrossRefGoogle Scholar
  2. 2.
    Xiao XD, Moulijn JA (1996) Energy Fuels 10:305CrossRefGoogle Scholar
  3. 3.
    Shi M, Shen Y-M (2003) Curr Org Chem 7:737CrossRefGoogle Scholar
  4. 4.
    Sakakura T, Choi J-C, Yasuda H (2007) Chem Rev 107:2365CrossRefGoogle Scholar
  5. 5.
    Gibson DH (1999) Coord Chem Rev 335:185Google Scholar
  6. 6.
    Omae I (2006) Catal Today 115:33CrossRefGoogle Scholar
  7. 7.
    Coates GW, Moore DR (2004) Angew Chem Int Ed Engl 43:6618CrossRefGoogle Scholar
  8. 8.
    Shaikh A, Sivaram S (1996) Chem Rev 96:951CrossRefGoogle Scholar
  9. 9.
    Sakakura T, Kohno K (2009) Chem Commun 1312Google Scholar
  10. 10.
    Wakihara M, Yamamoto O (1998) Lithium ion batteries: fundamentals and performance. Kodansha Ltd, TokyoCrossRefGoogle Scholar
  11. 11.
    Clements JH (2003) Ind Eng Chem Res 42:663CrossRefGoogle Scholar
  12. 12.
    Weissermel K, Arpe H (1997) Industrial organic chemistry, 3rd edn. Wiley-VCH Weinheim, NYGoogle Scholar
  13. 13.
    Ream BC (1989) US Patent 4,877,886Google Scholar
  14. 14.
    McMullen CH, Nelson JR, Ream BC and Sims JA Jr (1982) US Patent 4,314,945Google Scholar
  15. 15.
    Peppel WJ (1958) J Ind Eng Chem 50:767CrossRefGoogle Scholar
  16. 16.
    Kossev K, Koseva N, Troev K (2003) J Mol Catal A Chem 194:29CrossRefGoogle Scholar
  17. 17.
    Kihara N, Hara N, Endo T (1993) J Org Chem 58:6198CrossRefGoogle Scholar
  18. 18.
    Matsuda H, Ninagawa A, Nomura R, Tsuchida T (1979) Chem Lett 8:1261Google Scholar
  19. 19.
    Kim HS, Kim JJ, Lee BG, Jung OS, Jang HG, Kang SO (2000) Angew Chem Int Ed 39:4096CrossRefGoogle Scholar
  20. 20.
    Aresta M, Quaranta E, Ciccarese A (1987) J Mol Catal 41:355CrossRefGoogle Scholar
  21. 21.
    Li F, Xia C, Xu L, Sun W, Chen G (2003) Chem Commun 2042Google Scholar
  22. 22.
    Sun J, Fujita S-I, Zhao F, Arai M (2004) Green Chem 6:613CrossRefGoogle Scholar
  23. 23.
    Takeda N, Inoue S (1978) Bull Chem Soc Jpn 51:3564CrossRefGoogle Scholar
  24. 24.
    Aida T, Inoue S (1983) J Am Chem Soc 105:1304CrossRefGoogle Scholar
  25. 25.
    Paddock RL, Hiyama Y, McKay JM, Nguyen ST (2004) Tetrahedron Lett 45:2023CrossRefGoogle Scholar
  26. 26.
    Lu XB, Pan YZ, Ji DF, He R (2000) Chin Chem Lett 11:589Google Scholar
  27. 27.
    Ji D, Lu X, He R (2000) Appl Catal A Gen 203:329CrossRefGoogle Scholar
  28. 28.
    Darensbourg DJ, Mackiewicz RM, Phelps AL, Billodeaux DR (2004) Acc Chem Res 37:836CrossRefGoogle Scholar
  29. 29.
    Lu X-B, He R, Bai C-X (2002) J Mol Catal A Chem 186:1CrossRefGoogle Scholar
  30. 30.
    Meléndez J, North M, Pasquale R (2007) Eur J Inorg Chem 2007:3323Google Scholar
  31. 31.
    Meléndez J, North M, Villuendas P (2009) Chem Commun 2577Google Scholar
  32. 32.
    Lu X-B, Liang B, Zhang Y-J, Tian Y-Z, Wang Y-M, Bai C-X, Wang H, Zhang R (2004) J Am Chem Soc 126:3732CrossRefGoogle Scholar
  33. 33.
    Paddock RL and Nguyen ST (2004) Chem Commun 1622Google Scholar
  34. 34.
    Darensbourg DJ, Bottarelli P, Andreatta JR (2007) Macromolecules 40:7727CrossRefGoogle Scholar
  35. 35.
    North M, Pasquale R (2009) Angew Chemie Int Ed Engl 48:2946CrossRefGoogle Scholar
  36. 36.
    Baleiza C, Garcia H (2006) Chem Rev 106:3987CrossRefGoogle Scholar
  37. 37.
    Srivastava R, Srinivas D, Ratnasamy P (2003) Catal Lett 89:81CrossRefGoogle Scholar
  38. 38.
    Collins TJ, Richmond TG, Santarsiero BD, Treco BGRT (1986) J Am Chem Soc 108:2088CrossRefGoogle Scholar
  39. 39.
    Collins TJ, Uffelman ES (1989) Angew Chem Int Ed Engl 101:1552CrossRefGoogle Scholar
  40. 40.
    Patterson RE, Gordon-Wylie SW, Woomer CG, Norman RE, Weintraub ST, Horwitz CP, Collins TJ (1998) Inorg Chem 37:4748CrossRefGoogle Scholar
  41. 41.
    Horwitz CP, Ghosh A (2006) US Patent 7060818Google Scholar
  42. 42.
    Li F, Xiao L, Xia C, Hu B (2004) Tetrahedron Lett 45:8307CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Anindya Ghosh
    • 1
  • Punnamchandar Ramidi
    • 1
  • Sharon Pulla
    • 1
  • Shane Z. Sullivan
    • 1
  • Samuel L. Collom
    • 1
  • Yashraj Gartia
    • 1
  • Pradip Munshi
    • 2
  • Alexandru S. Biris
    • 3
  • Bruce C. Noll
    • 4
  • Brian C. Berry
    • 1
  1. 1.Department of ChemistryUniversity of Arkansas at Little RockLittle RockUSA
  2. 2.Reliance Industries LimitedResearch CenterVadodaraIndia
  3. 3.Department of Applied Science and Nanotechnology CenterUniversity of Arkansas at Little RockLittle RockUSA
  4. 4.Bruker AXS Inc.MadisonUSA

Personalised recommendations