Skip to main content
Log in

Logical Design for Replacement of Rh with Co in a Synergistic Catalyst for the Reduction of NO with H2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Rhodium has been replaced in a synergistic Pt–Rh/γ-Al2O3 catalyst for the reduction of NO with H2 with a less expensive transition metal (Co). Performance in activity and selectivity was still better than Pt alone, thus synergy was again obtained. The nanoparticles in the Pt–Co catalyst were designed and tailored to mimic the microstructure of the synergistic Pt–Rh nanoparticles.

Graphical Abstract

Rhodium has been replaced in a synergistic Pt–Rh/γ-Al2O3 catalyst for the reduction of NO with H2 with a less expensive transition metal (Co), and synergy in activity and selectivity was still obtained. The nanoparticles in the Pt–Co catalyst were designed and tailored to mimic the microstructure of the synergistic Pt–Rh nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lakis RE, Lyman CE, Stenger HG (1995) J Catal 154:261

    Article  CAS  Google Scholar 

  2. Lakis RE, Cai YP, Stenger HG, Lyman CE (1995) J Catal 154:276

    Article  CAS  Google Scholar 

  3. Hu Z, Allen FM, Wan CZ, Heck RM, Steger JJ, Lakis RE, Lyman CE (1998) J Catal 174:13

    Article  CAS  Google Scholar 

  4. Dimick PS, Kross JL, Roberts EG, Herman RG, Stenger HG, Lyman CE (2009) Appl Catal B Environ 89:1

    Article  CAS  Google Scholar 

  5. Regalbuto JR (ed) (2007) Catalyst preparation: science and engineering. Taylor & Francis, Boca Raton

    Google Scholar 

  6. Lyman CE, Lakis RE, Stenger HG, 2nd Mexican Congress of Electron Microscopy (1994) SSM16

  7. Lyman CE, Lakis RE, Stenger HG (1995) Ultramicroscopy 58:25

    Article  CAS  Google Scholar 

  8. Lyman CE, Lakis RE, Stenger HG, Totdal B, Prestvik R (2000) Mikrochim Acta 132:301

    CAS  Google Scholar 

  9. Mergler YJ, Nieuwenhuys BE (1997) Appl Catal B Environ 12:95

    Article  CAS  Google Scholar 

  10. Mergler YJ, Vanaalst A, Nieuwenhuys BE (1995) Reduct Nitrogen Oxide Emiss 587:196

    Article  CAS  Google Scholar 

  11. Mergler YJ, van Aalst S, van Delft J, Nieuwenhuys BE (1996) J Catal 161:310–318

    Article  CAS  Google Scholar 

  12. Boix A, Miró EE, Lombardo EA, Bañares MA, Mariscal R, Fierro JLG (2003) J Catal 217:186

    CAS  Google Scholar 

  13. Boix AV, Miro EE, Lombardo EA, Mariscal R, Fierro JLG (2004) Appl Catal A Gen 276:197

    Article  CAS  Google Scholar 

  14. Gutierrez L, Boix A, Petunchi JO (1998) J Catal 179:179

    Article  CAS  Google Scholar 

  15. Gutierrez L, Ribotta A, Boix A, Petunchi J (1996) 11th international congress on catalysis, 40th anniversary, Pts A And B, 631

  16. Ulla MA, Gutierrez L, Lombardo EA, Lónyi F, Valyon J (2004) Appl Catal A Gen 277:227

    Article  CAS  Google Scholar 

  17. Jacobs G, Ji Y, Davis BH, Cronauer D, Kropf AJ, Marshall CL (2007) Appl Catal A Gen 333:177

    Article  CAS  Google Scholar 

  18. Ko EY, Park ED, Seo KW, Lee HC, Lee D, Kim S (2006) J Nanosci Nanotech 6:3567

    Article  CAS  Google Scholar 

  19. Ko EY, Park ED, Lee HC, Lee D, Kim S (2007) Angew Chem Int Ed 46:734

    Article  CAS  Google Scholar 

  20. Gajdos M, Hafner J, Eichler A (2005) J Phys Condens Matter 18:41

    Article  Google Scholar 

  21. Okamoto H (2001) J Phase Equilib 22:591

    CAS  Google Scholar 

  22. Boer FRD (1988) Cohesion in metals: transition metal alloys. North-Holland, New York

    Google Scholar 

  23. Gajdos M, Hafner J, Eichler A (2005) J Phys Condens Matter 18:13

    Article  Google Scholar 

  24. Bugnard JM, Baudoing-Savois R, Gauthier Y, Hill EK (1993) Surf Sci 281:62

    Article  CAS  Google Scholar 

  25. Bugnard JM, Gauthier Y, BaudoingSavois R (1995) Surf Sci 344:42

    Article  CAS  Google Scholar 

  26. Mezey LZ, Hofer W (1996) Surf Sci 15:352–354

    Google Scholar 

  27. Ehrhardt C, Gjikaj M, Brockner W (2005) Thermochim Acta 432:36

    Article  CAS  Google Scholar 

  28. Borodziński A, Bonarowska M (1997) Langmuir 13:5613

    Article  Google Scholar 

  29. Weisz PB, Prater CD (1954) Adv Catal Relat Subj 6:143

    Article  CAS  Google Scholar 

  30. Weisz PB (1957) Z Phys Chem (Frankfurt am Main) 11:1

    CAS  Google Scholar 

  31. Froment GF, Bischoff KB (1990) Chemical reactor analysis and design. Wiley, Hoboken

    Google Scholar 

  32. Mukherjee S, Vannice MA (2006) J Catal 243:108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank David Ackland for assistance acquiring the catalyst images on the JEOL 2200 FS. Funding for this project was provided by the National Science Foundation (Grant DMR-0506705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Dimick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimick, P.S., Herman, R.G. & Lyman, C.E. Logical Design for Replacement of Rh with Co in a Synergistic Catalyst for the Reduction of NO with H2 . Catal Lett 135, 33–40 (2010). https://doi.org/10.1007/s10562-010-0273-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0273-8

Keywords

Navigation