Skip to main content
Log in

Kinetic Study of Formic Acid Oxidation on Highly Dispersed Carbon Supported Pd–TiO2 Electrocatalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The highly dispersed carbon supported Pd–TiO2 catalyst was prepared by a liquid phase reduction method with intermittent microwave irradiation. The kinetic parameters, such as the charge transfer parameter (α) and the apparent diffusion coefficient (D) of formic acid electrooxidation on a carbon supported Palladium Titanium dioxide (Pd–TiO2/C) electrode were obtained under the quasi steady-state conditions. The dependence on temperature of the formic oxidation at a Pd–TiO2/C electrode was also investigated and the activation energy (E a) at different potentials was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu ZL, Hong L, Tham MP, Lim TH, Jiang HX (2006) J Power Sources 161:831

    Article  CAS  Google Scholar 

  2. Fujiwra N, Friedrich KA, Stimming U (1999) J Electroanal Chem 472:120

    Article  Google Scholar 

  3. Oliveira NA, Giz MJ, Perez J, Ticianelli EA, Gonzalez ER (2002) J Electrochem Soc A272:149

    Google Scholar 

  4. Delime F, Leger JM, Lamy C (1998) J Appl Electrochem 28:27

    Article  CAS  Google Scholar 

  5. Mendez E, Rodrýguez JL, Arevalo MC, Pastor E (2002) Langmuir 18:763

    Article  CAS  Google Scholar 

  6. Ureta-Zafiaml MS, Yanez C, Pfiez M (1996) Electroanal Chem 405:159

    Article  Google Scholar 

  7. El-Shafei AA, Maksoud SA, Fouda AS (1995) J Electroanal Chem 395:181

    Article  Google Scholar 

  8. Park S, Xie Y, Weaver MJ (2002) Langmuir 8:5792

    Article  CAS  Google Scholar 

  9. Ha S, Dunbar Z, Masel RI (2006) J Power Source 158:129

    Article  CAS  Google Scholar 

  10. Zhu Y, Ha S, Masel RI (2004) J Power Sources 130(1–2):8

    Article  CAS  Google Scholar 

  11. Lamy C, Lima A, Lerhun V (2002) J Power Sources 105:283

    Article  CAS  Google Scholar 

  12. Selvaraj V, Alagar M, Hamerton I (2007) Appl Catal B Environ 73:172

    Article  CAS  Google Scholar 

  13. Zhua Y, Khana Z, Masela RI (2005) J Power Sources 139:15

    Article  CAS  Google Scholar 

  14. Zhang Z, Huang Y, Ge J, Liu C, Lu T, Xing W (2008) Electrochem Commun 10:1113

    Article  CAS  Google Scholar 

  15. Wang S, Kristian N, Jiang S, Wang X (2008) Electrochem Commun 10:961

    Article  CAS  Google Scholar 

  16. Rice C, Ha S, Masel RI, Wieckowski A (2002) J Power Sources 111:83

    Article  CAS  Google Scholar 

  17. Zhou W, Lee JY (2007) Electrochem Commun 9:1725

    Article  CAS  Google Scholar 

  18. Ha S, Larsen R, Masel RI (2005) J Power Sources 144:28

    Article  CAS  Google Scholar 

  19. Zhang Z, Zhou X, Liu C, Xing W (2008) Electrochem Commun 10:131

    Article  CAS  Google Scholar 

  20. Lovic JD, Tripkovic AV, Gojkovic SL (2005) J Electroanal Chem 581:294

    Article  CAS  Google Scholar 

  21. Tripkovic AV, Gojkovic SL, Popovic KD (2007) Electrochim Acta 53:887

    Article  CAS  Google Scholar 

  22. Zhou W, Lee JY (2008) J Phys Chem C 112:3789

    Article  CAS  Google Scholar 

  23. Nishimura K, Kunimatsu K, Machida K (1989) J Electroanal Chem 260:181

    Article  CAS  Google Scholar 

  24. Iwasaki S, Miki A, Ye S (2002) Abstract of the 2002 Fall Meeting of the Electrochemical Society of Japan 2M26

  25. Zhou WP, Lewera A, Larsen R (2006) J Phys Chem B 100:13393

    Article  CAS  Google Scholar 

  26. Wang Y, Wu X, Wu B, Gao Y (2009) J Power Sources 189:1020

    Article  CAS  Google Scholar 

  27. Larsen R, Ha S, Zakzeski J, Masel RI (2006) J Power Sources 157:78

    Article  CAS  Google Scholar 

  28. Shobha T, Aravinda CL, Bera P, Devi LG, Mayanna SM (2003) Mater Chem Phys 80:656

    Article  CAS  Google Scholar 

  29. Kibler LA, El-Aziz AM, Kolb DM (2003) J Mol Catal A Chem 199:57

    Article  CAS  Google Scholar 

  30. Jayashree RS, Spendelow JS, Yeom J, Rastogi C, Shannon MA, Kenis PJA (2005) Electrochim Acta 50:4674

    Article  CAS  Google Scholar 

  31. Wang X, Tang Y, Gao Y, Lu T (2008) J Power Sources 175:784

    Article  CAS  Google Scholar 

  32. Xi J, Wang J, Yu L, Qiu X, Chen L (2007) Chem Comm 16:1656

    Article  CAS  Google Scholar 

  33. Liu CP, Yang H, Xing W et al (2002) Chem J Chinese Univ 7:1367

    Google Scholar 

  34. Brett CMA, Brett MO (2002) Electrochemistry. Oxford University Press, Oxford, p 182

    Google Scholar 

  35. Chiba K, Ohsaka T, Oyama N (1987) Electroanal Chem 217:239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Natural Science Foundation of China (No. 20573029, 20573057), Natural Science Foundation of Heilongjiang Province (B200505) of China, the Fund of Department of Education of Heilongjiang Province (No. 11531243) of China and The Youth Fund of Harbin Science and Technology Bureau (2007RFQXG059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Gao, Y., Lu, T. et al. Kinetic Study of Formic Acid Oxidation on Highly Dispersed Carbon Supported Pd–TiO2 Electrocatalyst. Catal Lett 130, 312–317 (2009). https://doi.org/10.1007/s10562-009-9994-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9994-y

Keywords

Navigation