Skip to main content
Log in

CO Oxidation over Anatase TiO2 Supported Au: Effect of Nitrogen Doping

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Nitrogen doped yellowish anatase phase of titania support (TiO2−x N x ) was prepared by hydrolysis of titanium (IV) butoxide with 15% NH4OH followed by filtration, drying and calcination at 450 °C for 3 h. For comparison, TiO2 was prepared by hydrolysing titanium (IV) butylate with distilled water. Deposition precipitation method was used for Au loading on TiO2−x N x and TiO2. These were characterised by XRD, Laser Raman spectroscopy, transmission electron microscopy, BET surface area analyser, and UV–visible spectrophotometry. UV–visible (diffused reflectance) spectrum of TiO2−x N x support shows a distinct absorption band around 450 nm wavelength indicating for N doping. Whereas, TiO2 does not show any absorption band in the visible region. The activity of gold loaded on these supports was tested for CO oxidation reaction. Effect of different pre-treatment conditions and effect of moisture on these catalysts were studied, and the results obtained were interpreted on the basis of nitrogen doping, optoelectronic properties, ability of oxygen uptake of the support and particle size of gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Haruta M (1997) Catal Today 36:153

    Article  CAS  Google Scholar 

  2. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    Article  CAS  Google Scholar 

  3. Meyer R, Lemire C, Shaikhutdinov ShK, Freund H-J (2004) Gold Bull 37:72

    CAS  Google Scholar 

  4. Bond GC, Thompson DT (1999) Catal Rev Sci Eng 41:319

    Article  CAS  Google Scholar 

  5. Tsubota S, Haruta M, Kobayashi T, Ueda A, Nakahara Y (1991) In: Poncelet G et al (eds) Preparation of catalysts, vol V. Elsevier, Amsterdam, pp 695–704

    Google Scholar 

  6. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M, Delmon B (1993) J Catal 144:175

    Article  CAS  Google Scholar 

  7. Ho KY, Yeung KL (2007) Gold Bull 40:15

    CAS  Google Scholar 

  8. Haruta M (2002) CATTECH 6:102

    Article  CAS  Google Scholar 

  9. Okazaki K, Ichikawa S, Maeda Y, Haruta M, Kohyama M (2005) Appl Catal A Gen 291:45

    Article  CAS  Google Scholar 

  10. Frost JC (1998) Nature 334:577

    Article  Google Scholar 

  11. Okumura M, Kitagawa Y, Haruta M, Yamaguchi K (2005) Appl Catal A Gen 291:37

    Article  CAS  Google Scholar 

  12. Di Valentin C, Pacchioni G, Selloni A, Livraghi S, Giamello E (2005) J Phys Chem B 109:11414

    Article  CAS  Google Scholar 

  13. Sutter E, Sutter P, Fujita E, Muckerman J (2006) Abstracts of the European. Materials Research Society Spring Meeting, Nice, p M-14

  14. Kuroda Y, Mori T, Yagi K, Makihata N, Kawahara Y, Nagao M, Kittaka S (2005) Langmuir 21:8026

    Article  CAS  Google Scholar 

  15. Centeno MA, LIoret MJ (2002) Mat Sci Forum 383:111

    Article  CAS  Google Scholar 

  16. van de Krol R, Goossens A (2003) J Vac Sci Technol A 21:76

    Article  Google Scholar 

  17. Ohsaka T, Izumi F, Fujiki Y (1978) J Raman Spectrosc 7:321

    Article  Google Scholar 

  18. Serpone N, Lawless D, Khairutdinov R (1995) J Phys Chem 99:16646

    Article  CAS  Google Scholar 

  19. Emeline AV, Sheremetyeva NV, Khomchenko NV, Ryabchuk VK, Serpone N (2007) J Phys Chem C 111:11456

    Article  CAS  Google Scholar 

  20. Mohameda SH, Kappertza O, Niemeiera T, Dresea R, Wakkadb MM, Wuttiga M (2004) Thin Solid Films 468:48

    Article  Google Scholar 

  21. Gluhoi AC, Vreeburg HS, Bakker JW, Nieuwenhuys BE (2005) Appl Catal A Gen 291:145

    Article  CAS  Google Scholar 

  22. Guzman J, Gates BC (2002) J Phys Chem B 106:7659

    Article  CAS  Google Scholar 

  23. Kung MC, Costello CK, Kung HH (2004) In: Spivey JJ, Roberts GW (eds) Specialist periodical reprints: catalysis, vol 17. Royal Society of Chemistry, London, p 152

    Google Scholar 

  24. Costello CK, Kung MC, Oh HS, Kung KH (2002) Appl Catal A Gen 232:159

    Article  CAS  Google Scholar 

  25. Centeno MA, Carrizosa I, Odriozola JA (2003) Appl Catal A Gen 246:365

    Article  CAS  Google Scholar 

  26. Okumura M, Haruta M, Kitagawa Y, Yamaguchi K (2007) Gold Bull 40:40

    CAS  Google Scholar 

  27. Wallace WT, Min BK, Goodman DW (2005) J Mol Catal A 228:3

    Article  CAS  Google Scholar 

  28. Hakkinen H, Abbet S, Sanchez A, Heiz U, Landman U (2003) Angew Chem Int Ed 42:1297

    Article  CAS  Google Scholar 

  29. Sanchez A, Abbet S, Heiz U, Schneider W-D, Hakkinen H, Barnett RN, Landman U (1999) J Phys Chem A 103:9573

    Article  CAS  Google Scholar 

  30. Wahlstrom E, Lopez N, Schaub R, Thostrup P, Ronnau A, Africh C, Laegsgaard E, Norskov JK, Besenbacher F (2003) Phys Rev Lett 90:26101

    Article  CAS  Google Scholar 

  31. Min BK, Santra AK, Goodman DW (2003) J Vac Sci Technol B 21:2319

    Article  CAS  Google Scholar 

  32. Baumer M, Freund HJ (1999) Prog Surf Sci 61:127

    Article  CAS  Google Scholar 

  33. Baumer M, Frank M, Heemeier M, Kuhnemuth R, Stempel S, Freund HJ (2000) Surf Sci 454/456:957

    Article  Google Scholar 

  34. Haas G, Menck A, Brune H, Barth JV, Venebles JA, Kern K (2000) Phys Rev B 61:11105

    Article  CAS  Google Scholar 

  35. Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. Imperial College Press, London

    Google Scholar 

  36. Centeno MA, Paulis M, Montes M, Odriozola JA (2005) Appl Catal B Environ 61:77

    Article  Google Scholar 

  37. Liu H, Kozlov AI, Kozlova AP, Shido T, Asakura K, Iwasawa Y (1999) J Catal 185:252

    Article  CAS  Google Scholar 

  38. Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plazk V, Bhem RJ (2001) J Catal 197:113

    Article  CAS  Google Scholar 

  39. Okumura M, Coronado JM, Soria J, Haruta M, Conesa JC (2001) J Catal 203:168

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R. Sakthivel thanks the University of the Witwatersrand, Johannesburg, for award of postdoctoral fellowship. The award of a bursary (to T.N) from Project AuTEK (Mintek and Anglogold-Ashanti) is also acknowledged with thanks. We also thank Mr. John Moma for help with building the reactor system and Mr. Rudolf Erasmus, from the School of Physics, for the measurement of Raman and DRS-UV–Vis spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Scurrell.

Additional information

The author R. Sakthivel is on study leave from Institute of Minerals and Materials Technology, Bhubaneswar, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakthivel, R., Ntho, T., Witcomb, M. et al. CO Oxidation over Anatase TiO2 Supported Au: Effect of Nitrogen Doping. Catal Lett 130, 341–349 (2009). https://doi.org/10.1007/s10562-009-9921-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9921-2

Keywords

Navigation