Skip to main content
Log in

Effect of Mg Addition on the Physical and Catalytic Properties of Cu/CeO2 for NO + CO Reduction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Copper catalysts supported on magnesia promoted ceria are synthesized and used for NO reduction by CO. The supports and the subsequent Cu catalysts are prepared by citric acid sol–gel and impregnation methods, respectively. The results of N2-physisorption, XRD, EPR and TPR measurements indicate that the Mg addition promotes not only the dispersion of CuO, but also the formation of Cu–O–Ce solid solution. The highest amount of Cu–O–Ce solid solution is found in catalyst modified with 5 wt.% MgO. Based on the catalytic performance, two active sites for the reduction NO by CO are proposed: copper matrix and Cu–O–Ce solid solution. The former does not require the involvement of oxygen vacancy and is more active at low temperature range (T < 200 °C), while the latter shows higher NO conversion at temperature above 200 °C, due to the easy regeneration of oxygen vacancy. Also, it is found that the NO conversion over copper matrix is suppressed, while that over Cu–O–Ce solid solution is stimulated in high CO concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Panayotov D, Dimitrov L, Khristova M, Petrov L, Mehandjiev D (1995) Appl Catal B Environ 6:61

    Article  CAS  Google Scholar 

  2. Zhu J, Zhao Z, Xiao D, Li J, Yang X, Wu Y (2005) J Mol Catal A 238:35

    Article  CAS  Google Scholar 

  3. Zhang R, Villanueva A, Alamdari H, Kaliaguine S (2006) J Mol Catal A 258:22

    Article  CAS  Google Scholar 

  4. Mizuno N, Yamamoto M, Tanaka M, Misono M (1991) J Catal 132:560

    Article  CAS  Google Scholar 

  5. Fernández-García M, Gómez Rebollo E, Guerrero Ruiz A, Conesa JC, Soria J (1997) J Catal 172:146

    Article  Google Scholar 

  6. Chien CC, Shi JZ, Huang TJ (1997) Ind Eng Chem Res 36:1544

    Article  CAS  Google Scholar 

  7. Jiang X, Ding G, Lou L, Chen Y, Zheng X (2004) J Mol Catal A 218:187

    Article  CAS  Google Scholar 

  8. Bera P, Aruna ST, Patil KC, Hegde MS (1999) J Catal 186:36

    Article  CAS  Google Scholar 

  9. Wen B, He M (2002) Appl Catal B Environ 37:75

    Article  CAS  Google Scholar 

  10. Hu Y, Dong L, Shen M, Liu D, Wang J, Ding W, Chen Y (2001) Appl Catal B Environ 31:61

    Article  CAS  Google Scholar 

  11. Ozawa M, Matuda K, Suzuki S (2000) J Alloys Compd 56:303

    Google Scholar 

  12. Reddy BM, Khan A, Lakshmanan P, Aouine M, Loridant S, Volta JC (2005) J Phys Chem B 109:3355

    Article  CAS  Google Scholar 

  13. Reddy BM, Bharali P, Saikia P, Khan A, Loridant S, Muhler M, Grünert W (2007) J Phys Chem C 111:1878

    Article  CAS  Google Scholar 

  14. Park JW, Jeong JH, Yoon WL, Jung H, Lee HT, Lee DK, Park YK, Rhee YW (2004) Applied Catalysis A 274:25

    Article  CAS  Google Scholar 

  15. Wang JB, Tsai DH, Huang TJ (2002) J Catal 208:370

    Article  CAS  Google Scholar 

  16. Ranga Rao G, Fornasiero P, Di Monte R, Kašpar J, Vlaic G, Balducci G, Meriani S, Gubitosa G, Cremona A, Graziani M (1996) J Catal 162:1

    Article  Google Scholar 

  17. Fornasiero P, Ranga Rao G, Kašpar J, L’Erario F, Graziani M (1998) J Catal 175:269

    Article  CAS  Google Scholar 

  18. Yang Z, Woo TK, Hermansson K (2006) Surf Sci 600:4953

    Article  CAS  Google Scholar 

  19. Roy S, Hegde MS (2008) Catal Commun 9:811

    Article  CAS  Google Scholar 

  20. Roy S, Marimuthu A, Hegde MS, Madras G (2008) Catal Commun 9:101

    Article  CAS  Google Scholar 

  21. Costa CN, Efstathiou AM (2007) Appl Catal B Environ 72:240

    Article  CAS  Google Scholar 

  22. Hocevar S, Krasovec UO, Orel B, Arico AS, Kim H (2000) Appl Catal B Environ. 28:113

    Article  CAS  Google Scholar 

  23. Aboukais A, Bennani A, Aissi CF, Wrobel G, Guelton M (1992) J Chem Soc Faraday Trans 88:1321

    Article  CAS  Google Scholar 

  24. Liu W, Flytzani-Stephanopoulos M (1995) J Catal 153:304–332 (parts I and II)

    Article  CAS  Google Scholar 

  25. Tschöpe A, Liu W, Flytzani-Stephanopoulos M, Ying JY (1995) J Catal 157:42

    Article  Google Scholar 

  26. Ying JY, Tschöpe A, Levin D (1995) Nanostruct Mater 6:237

    Article  CAS  Google Scholar 

  27. Sato S, Koizumi K, Nozaki F (1998) J Catal 178:264

    Article  CAS  Google Scholar 

  28. Chen J, Zhu J, Zhan Y, Lin X, Cai G, Wei K, Zheng Q, Submitted

  29. Aboukaïs A, Bennani A, Lamonier-Dulongpont C, Abi-Aad E, Wrbel G (1996) Colloid Surface A 115:171

    Article  Google Scholar 

  30. Crusson-Blouet E, Aboukais A, Mssi FC, Guelton M (1992) Chem Mater 4:1129

    Article  CAS  Google Scholar 

  31. Scholz G, Lück R, Stöer R, Lunk HJ, Ritschl F (1991) J Chem Soc Faraday Trans 87:717

    Article  CAS  Google Scholar 

  32. Clementz DM, Pinnavia TJ, Mortla MM (1973) J Phys Chem 77:196

    Article  CAS  Google Scholar 

  33. Aboukais A, Bennani A, Aissi CF, Guelton M, Vedrinef JC (1992) Chem Mater 4:977

    Article  CAS  Google Scholar 

  34. Martínez-Arias A, Fernández-García M, Soria J, Conesa JC (1999) J Catal 182:367

    Article  Google Scholar 

  35. Aboukais A, Bennain A, Aissi CF, Wrobel G, Guelton M, Vedrine J (1992) J Chem Soc Faraday Trans 88:615

    Article  CAS  Google Scholar 

  36. Wagner GR, Schumacher RT, Friedberg SA (1966) Phys Rev 150:226

    Article  CAS  Google Scholar 

  37. Sofia J, Conesa JC, Martinez-Arias A, Coronado JM (1993) Solid State lonics 63–65:755

    Google Scholar 

  38. Mehran F, Barnes SE, Chandrashekhar GV, McGuire TR, Shafer MW (1988) Solid State Commun 67:1187

    Article  CAS  Google Scholar 

  39. Kulyova SP, Lunina EV, Lunin VV, Kostyuk BG, Muravyova GP, Kharlanov AN (2001) Chem Mater 13:1491

    Article  CAS  Google Scholar 

  40. Yao HC, Yu Yao YF (1984) J Catal 86:254

    Article  CAS  Google Scholar 

  41. Liu Z, Zhou R, Zheng X (2007) J Mol Catal A Chem 267:137

    Article  CAS  Google Scholar 

  42. Wang X, Rodriguez JA, Hanson JC, Gamarra D, Martínez-Arias A, Fernández-García M (2005) J Phys Chem B 109:19595

    Article  CAS  Google Scholar 

  43. Luo MF, Song YP, Lu JQ, Wang XY, Pu ZY (2007) J Phys Chem C 111:12686

    Article  CAS  Google Scholar 

  44. Bera P, Priolkar KR, Sarode PR, Hegde MS, Emura S, Kumashiro R, Lalla NP (2002) Chem Mater 14:3591

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (20771025), the Nature Science Foundation of Fujian Province of China (2007J0221) and the Education Department of Fujian province of China (JB06050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Zhu, J., Chen, C. et al. Effect of Mg Addition on the Physical and Catalytic Properties of Cu/CeO2 for NO + CO Reduction. Catal Lett 130, 254–260 (2009). https://doi.org/10.1007/s10562-009-9878-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9878-1

Keywords

Navigation