Skip to main content
Log in

Application of Microwave-Assisted Deposition for the Synthesis of Noble Metal Particles on Ti-Containing Mesoporous Silica

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A facile and unique methodology to synthesize the nano-sized and uniform noble metal (Pt and Au) particles has been developed using mesoporous silica support including single-site titanium oxide moieties (Ti-HMS) under microwave irradiation. Characterization by CO adsorption, XAFS, and TEM analysis revealed that the size of metal particles depends on the preparation methods and that the smaller sizes of metal particles were formed on the microwave-assisted metal catalysts compared to the conventionally prepared impregnated catalysts. These nano-sized metal catalysts are useful as efficient catalysts for the various reactions such as the hydrogenation of nitrobenzene and oxidation of CO. This method is also successfully applicable to the deposition of Au metal with smaller size on the Ti-HMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lu A-H, Salabas EL, Schüth F (2007) Angew Chem Int Ed 46:1222

    Article  CAS  Google Scholar 

  2. Deivaraj TC, Chena W, Lee JY (2003) J Mat Chem 13:2555

    Article  CAS  Google Scholar 

  3. Zhou Y, Wang CY, Zhu YR, Chen ZY (1999) Chem Mater 11:2310

    Article  CAS  Google Scholar 

  4. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924

    Article  CAS  Google Scholar 

  5. Cuenya BR, Baeck S-H, Jaramillo TF, McFarland EW (2003) J Am Chem Soc 125:12928

    Article  Google Scholar 

  6. Oliver Kappe C (2004) Angew Chem Int Ed 43:6250

    Article  Google Scholar 

  7. Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T (2005) Chem Eur J 11:440

    Article  CAS  Google Scholar 

  8. Yan X, Liu H, Liew KY (2001) J Mater Chem 11:3387

    Article  CAS  Google Scholar 

  9. Zhu J-F, Zhu Y-J (2006) J Phys Chem B 110:8593

    Google Scholar 

  10. Deivaraj JTC, Chen W, Lee JY (2003) J Mater Chem 13:2555

    Article  CAS  Google Scholar 

  11. Yamamoto T, Wada Y, Sakata T, Mori H, Goto M, Hibino S, Yanagida S (2004) Chem Lett 33:158

    Article  CAS  Google Scholar 

  12. Liang J, Deng Z, Jiang X, Li F, Li Y (2002) Inorg Chem 41:3602

    Article  CAS  Google Scholar 

  13. Gou L, Chipara M, Zaleski JM (2007) Chem Mater 19:1755

    Article  CAS  Google Scholar 

  14. Hwang YK, Chang J-S, Park S-E, Kim DS, Kwon Y-U, Jhung SH, Hwang J-S, Park MS (2005) Angew Chem Int Ed 44:556

    Article  CAS  Google Scholar 

  15. Chen WX, Lee JY, Liu Z, Chem Commun 2588 (2002)

  16. Chen W, Lee JY, Liu Z (2004) Chem Lett 33:474

    Article  CAS  Google Scholar 

  17. Zhang X, Jiang W, Song D, Liu J, Li F (2008) Mater Lett 62:2343

    Article  CAS  Google Scholar 

  18. Yu W, Tu W, Liu H (1999) Langmuir 15:6

    Article  CAS  Google Scholar 

  19. Yamashita H, Matsuoka M, Tsuji K, Shioya Y, Anpo M, Che M (1996) J Phys Chem 100:397

    Article  CAS  Google Scholar 

  20. Yamashita H, Ichihashi Y, Anpo M, Hashimoto M, Louis C, Che M (1996) J Phys Chem 100:16041

    Article  CAS  Google Scholar 

  21. Yamashita H, Yoshizawa K, Ariyuki M, Higashimoto S, Che M, Anpo M (2001) Chem Commun 435

  22. Ikeue K, Yamashita H, Anpo M, Takewaki T (2001) J Phys Chem B 105:8350

    Google Scholar 

  23. Thomas JM, Catlow CRA, Sankar G (2002) Chem Commun 2921

  24. Mori K, Kondo Y, Morimoto S, Yamashita H (2008) J Phys Chem C 112:397

    Article  CAS  Google Scholar 

  25. Mori K, Kagohara K, Yamashita H (2008) J Phys Chem C 112:2593

    Google Scholar 

  26. Kuwahara Y, Kamegawa T, Mori K, Yamashita H (2008) Chem Commun 4783

  27. Yamashita H, Mori K (2007) Chem Lett 36:348

    Article  CAS  Google Scholar 

  28. Yamashita H, Miura Y, Mori K, Shironita S, Ohmichi T, Sakata T, Mori H (2007) Pure Appl Chem 79:2095

    Article  CAS  Google Scholar 

  29. Tanev PT, Chibwe M, Pinnavaia TJ (1994) Nature 368:32

    Article  Google Scholar 

  30. Hamada S, Ikeue K, Machida M (2007) Appl Catal B 71:1

    Article  CAS  Google Scholar 

  31. Occelli ML, Biz S, Auroux A (1999) Appl Catal A 183:231

    Google Scholar 

  32. Trukhan NN, Panchenko AA, Roduner E (2005) Langmuir 21:10545

    Article  CAS  Google Scholar 

  33. Tabacchi G, Gianotti E, Fois E, Martra G, Marchese L, Coluccia S, Gamba A (2007) J Phys Chem C 111:4946

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support by Priority Assistance for the Formation of Worldwide Renowned Centers of Research—The Global COE Program (Project: Center of Excellence for Advanced Structural and Functional Materials Design) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The X-ray adsorption expetimentals were performed at the SPring-8 BL01B1 station (2008A1366). The authors appreciate Dr. Eiji Taguchi and Prof. Hirotaro Mori at the Research Center for Ultra-High Voltage Electron Microscopy, Osaka University for assistance with TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Yamashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shironita, S., Takasaki, T., Kamegawa, T. et al. Application of Microwave-Assisted Deposition for the Synthesis of Noble Metal Particles on Ti-Containing Mesoporous Silica. Catal Lett 129, 404–407 (2009). https://doi.org/10.1007/s10562-009-9861-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9861-x

Keywords

Navigation