Skip to main content
Log in

Candida rugosa Lipase Supported on High Crystallinity Chitosan as Biocatalyst for the Synthesis of 1-Butyl Oleate

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Lipase from Candida rugosa was immobilized onto chitosan using four different protocols. The variation of crystallinity (5.57–92.86%), which was a result of thermal treatments and crosslinking of the chitosan, influenced the protein load (7.46–25.15 mg g−1 chitosan) and protein load efficiency (21.67–41.68%) for immobilization assays made with identical lipase solution concentration (1.3 mg of protein/mL). The effects of protein load (10, 30, 50 and 70 mg of lipase), reaction temperature (30, 40, 50, 60, 70 °C) and substrates molar ratio (0.05–0.30 M) have been studied in the butyl oleate synthesis in iso-octane when water activity of the free and immobilized enzymes were fixed around 0.53 ± 0.04. The catalytic activity of the immobilized lipase has also been tested. The Ping–Pong bi–bi mechanism with dead end complex of n-butanol was found to fit the initial rate data. The values of the apparent kinetic parameters were determined by graphic and parametric method as: V max = 18.2–19.0 mmol min−1 g−1; K M; Acid = 0.599–0.640 mol L−1; K M; Alcohol = 0.128–0.149 mol L−1; and K i; Alcohol = 1.933 mol L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Margolin AL (1993) Enzyme Microb Technol 15:266

    Article  CAS  Google Scholar 

  2. Faber K, Franssen MCR (1993) Trends Biotechnol 11:461

    Article  CAS  Google Scholar 

  3. Carrea G, Riva S (2000) Angew Chem Int Ed 39:2226

    Article  CAS  Google Scholar 

  4. Krishna SH (2002) Biotech Adv 20:239

    Article  Google Scholar 

  5. Sharma R, Chisti Y, Banerjee UC (2001) Biotech Adv 19:627

    Article  CAS  Google Scholar 

  6. Juan JC, Zhang J, Jiang Y, Cao W, Yarmo MA (2007) Catal Lett 117:153

    Article  CAS  Google Scholar 

  7. Linko YY, Lämsä M, Wu X, Uosukainen E, Seppälä J, Linko P (1998) J Biotechnol 66:41

    Article  CAS  Google Scholar 

  8. Ghamgui H, Karra-Chaábouni M, Gargouri Y (2004) Enzyme Microb Technol 35:355

    Article  CAS  Google Scholar 

  9. Zaidi A, Gainer JL, Carta G, Mrani A, Kadiri T, Belarbi Y, Mir A (2002) J Biotechnol 93:209

    Article  CAS  Google Scholar 

  10. Kasumi T, Tsuji M, Hayashi K, Tsumura N (1977) Agric Biol Chem 41:1865

    CAS  Google Scholar 

  11. Ruiz M, Guibal SAE (2002) Sep Sci Technol 37:2385

    Article  CAS  Google Scholar 

  12. Guibal E (2004) Sep Purif Technol 38:43

    Article  CAS  Google Scholar 

  13. Choplin A, Quignard F (1998) Coord Chem Rev 178–180:1679

    Article  Google Scholar 

  14. Piron E, Domard A (1997) J Int Biol Macromol 21:327

    Article  CAS  Google Scholar 

  15. Orrego CE, Valencia JS (2008) Bioproc Biosyst Eng. doi:10.1007/s-00449-008-0237-1

    Google Scholar 

  16. Focher B, Beltrame PL, Naggi A, Torri G (1990) Carbohydr Polym 12:405

    Article  CAS  Google Scholar 

  17. Ogawa K, Yui T, Okuyama K (2004) J Int Biol Macromol 34:1

    Article  CAS  Google Scholar 

  18. Rockland LB (1960) Anal Chem 32:1375

    Article  CAS  Google Scholar 

  19. Rahman S (1995) Food properties handbook. CRC Press Inc, Boca Raton

    Google Scholar 

  20. Robson RM, Goll DE, Temple MJ (1968) Anal Biochem 24:339

    Article  CAS  Google Scholar 

  21. AOAC (1990) Official methods of analysis of the association of official analytical chemists. AOAC International, Arlington

    Google Scholar 

  22. Chiou SH, Wu WT (2004) Biomaterials 25:197–204

    Article  CAS  Google Scholar 

  23. Alsarra IA, Betigeri SS, Zhang H, Erans BA, Neau SH (2002) Biomaterials 23:3637

    Article  CAS  Google Scholar 

  24. Hung TC, Giridhar R, Chiou SH, Wu WT (2003) J Mol Cat B Enzym 26:69

    Article  CAS  Google Scholar 

  25. Malcata FX, Reyes HR, Garcia HS, Hill CGJ, Amundson CH (1992) Enzyme Microb Technol 14:426

    Article  CAS  Google Scholar 

  26. Graber M, Bousquet-Dubouch MP, Sousa N, Lamare S, Legoy MD (2003) Biochim Biophys Acta 1645:56

    CAS  Google Scholar 

  27. Wehtje E, Adlercreutz P (1997) Biotechnol Lett 11:537

    Article  Google Scholar 

  28. Rahman MBA, Zaidan UH, Basri M, Hussein MZ, Rahman RNZRA, Salleh AB (2008) J Mol Cat B Enzym 50:33

    Google Scholar 

  29. Chowdary GV, Prapulla SG (2002) Process Biochem 38:393

    Article  CAS  Google Scholar 

  30. Miller DA, Prausnitz JM, Blanch HW (1991) Enzyme Microb Technol 13:98

    Article  CAS  Google Scholar 

  31. Wilke CK, Chang P (1955) AIChE J 1:264

    Article  CAS  Google Scholar 

  32. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena. Wiley, New York

    Google Scholar 

  33. Szczesna-Antczak M, Antczak T, Rzyska M, Bielecki S (2002) J Mol Cat B Enzym 19–20:261

    Article  Google Scholar 

  34. Bezbradica D, Mijin D, Siler-Marinkovic S, Knezevic Z (2006) J Mol Cat B Enzym 38:11

    Article  CAS  Google Scholar 

  35. Serri NA, Kamaruddin AH, Long WS (2006) Bioproc Biosyst Eng 29:253

    Article  CAS  Google Scholar 

  36. Segel IH (1975) Enzyme kinetics. Wiley, New York (reprinted 1993)

    Google Scholar 

  37. Chulalaksananukul W, Condoret JS, Delorme P, Willemot RM (1990) FEBS Lett 276:181

    Article  CAS  Google Scholar 

  38. Rizzi M, Stylos P, Rick A, Reuss MA (1992) Enzyme Microb Technol 14:709

    Article  CAS  Google Scholar 

  39. Janssen AEM, Vaidya AM, Hailing PJ (1996) Enzyme Microb Technol 18:340

    Article  CAS  Google Scholar 

  40. Krishna SH, Karanth NG (2001) Biochim Biophys Acta 1547:262

    Google Scholar 

  41. García T, Coteron A, Martínez M, Aracil J (2000) Chem Eng Sci 55:1411

    Article  Google Scholar 

  42. Kamiya N, Goto M (1997) Biotechnol Prog 13:488

    Article  CAS  Google Scholar 

  43. Alsarra IA, Neaub SH, Howard MA (2004) Biomaterials 25:2645

    Article  CAS  Google Scholar 

  44. Ramamurthi S, McCurdy AR (1994) J Am Oil Chem Soc 71:927

    Article  CAS  Google Scholar 

  45. Oliveira AC, Rosa MF, Aires-Barros MR, Cabral JMS (2001) J Mol Cat B Enzym 11:999

    Article  CAS  Google Scholar 

  46. Hazarika S, Goswami P, Dutta NN, Hazarika AK (2002) Chem Eng J 85:61

    Article  CAS  Google Scholar 

  47. Marty A, Chulalaksananukul W, Willemot RM, Condoret JS (1992) Biotechnol Bioeng 39:273

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Eduardo Orrego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orrego, C.E., Valencia, J.S. & Zapata, C. Candida rugosa Lipase Supported on High Crystallinity Chitosan as Biocatalyst for the Synthesis of 1-Butyl Oleate. Catal Lett 129, 312–322 (2009). https://doi.org/10.1007/s10562-009-9857-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9857-6

Keywords

Navigation