Skip to main content
Log in

Production of Middle Distillate from Synthesis Gas in a Dual-bed Reactor Through Hydrocracking of Wax Over Mesoporous Pd-Al2O3 Composite Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Production of middle distillate (C10–C20) from synthesis gas (CO + H2) through hydrocracking of wax (>C21+) was carried out in a dual-bed reactor. Co/TiO2 catalyst was used in the first-bed reactor to produce wax from synthesis gas, and a mesoporous Pd-alumina composite catalyst (Pd-Al2O3) was used in the second-bed reactor to produce middle distillate through hydrocracking of wax. For comparison, a Pd catalyst supported on mesoporous alumina (Pd/Al2O3) was also examined as a second-bed catalyst. The catalytic performance of Pd-Al2O3 and Pd/Al2O3 for hydrocracking of wax to middle distillate was tested and compared. It was revealed that selectivity for middle distillate in the dual-bed reactor was much higher than that in the first-bed reactor, indicating that both Pd-Al2O3 and Pd/Al2O3 catalysts in the second-bed reactor served as an efficient catalyst for hydrocracking of wax to middle distillate. Furthermore, Pd-Al2O3 catalyst showed a higher selectivity for middle distillate than Pd/Al2O3. The enhanced catalytic performance of Pd-Al2O3 for hydrocracking of wax to middle distillate was due to high Pd dispersion and high Pd surface area. Large medium acidity of Pd-Al2O3 catalyst was also responsible for its high catalytic performance in the hydrocracking of wax to middle distillate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Konoval’chikov LD, Nefedov BK, Kruglikov VY, Konoval’chikov OD (1984) Chem Tech Fuels Oils 20:8–11

    Article  Google Scholar 

  2. Scherzer J, Gruia AJ (1996) Hydrocracking science and technology. Marcel Dekker, New York

    Google Scholar 

  3. Keogh RA, Sparks D, Hu J, Wender I, Tierney JW, Wang W, Davis BH (1994) Energy Fuels 8:755–762

    Article  CAS  Google Scholar 

  4. Liu ZW, Li X, Asami K, Fujimoto K (2005) Catal Today 104:41–47

    Article  CAS  Google Scholar 

  5. de Klerk A (2008) Catal Today 130:439–445

    Article  Google Scholar 

  6. Li X, Asami K, Luo M, Michiki K, Tsubaki N, Fusimoto K (2003) Catal Today 84:59–65

    Article  CAS  Google Scholar 

  7. Martinez A, Valencia A, Murciano R, Cerqueira HS, Costa AF, Aguiar EFS (2008) Appl Catal A Gen 346:117–125

    Article  CAS  Google Scholar 

  8. Liu ZW, Li X, Asami K, Fujimoto K (2005) Energy Fuels 19:1790–1794

    Article  CAS  Google Scholar 

  9. Liu ZW, Li X, Asami K, Fujimoto K (2005) Catal Commun 6:503–506

    Article  CAS  Google Scholar 

  10. Zhao TS, Chang J, Yoneyama Y, Tsubaki N (2005) Ind Eng Chem Res 44:769–775

    Article  CAS  Google Scholar 

  11. Sie ST (1993) Ind Eng Chem Res 32:403–408

    Article  CAS  Google Scholar 

  12. Cho KM, Park S, Seo JG, Youn MH, Baeck S-H, Jun K-W, Chung JS, Song IK (2008) Appl Catal B Environ 83:195–201

    Article  CAS  Google Scholar 

  13. Cho KM, Park S, Seo JG, Youn MH, Nam I, Baeck S-H, Jun K-W, Chung JS, Song IK (2008) Chem Eng J 146:307–314

    Article  Google Scholar 

  14. Mills GA, Heinemann H, Milliken TH, Oblad AG (1953) Ind Eng Chem Res 45:134–142

    CAS  Google Scholar 

  15. Venkatesh KR, Hu J, Wang W, Holder GD, Tierney JW, Wender I (1996) Energy Fuels 10:1163–1170

    Article  CAS  Google Scholar 

  16. Liu ZW, Li X, Asami K, Fujimoto K (2000) Appl Catal A Gen 197:191–200

    Article  Google Scholar 

  17. Hwang S, Lee J, Park S, Park DR, Jung JC, Lee S-B, Song IK (2008) Catal Lett doi:10.1007/s10562-008-9784-y

  18. Grunes J, Zhu J, Yang M, Somorjai GA (2003) Catal Lett 86:157–161

    Article  CAS  Google Scholar 

  19. Angevine PJ, Huang TJ (2000) PCT WO 00/40333

  20. Madikizela-Mngangeni NN, Coville NJ (2005) J Mol Catal A Chem 225:137–142

    Article  Google Scholar 

  21. Seo JG, Youn MH, Park S, Park DR, Jung JC, Chung JS, Song IK (2008) Catal Today doi:10.1016/j.cattod.2008.12.008

  22. Ray JC, You K-S, Ahn J-W, Ahn WS (2007) Micropor Mesopor Mater 100:183–190

    Article  CAS  Google Scholar 

  23. Songip AR, Masuda T, Kuwahara H, Hashimoto K (1994) Energy Fuels 8:136–140

    Article  CAS  Google Scholar 

  24. de la Puente G, Sedran UA (1998) J Catal 179:36–42

    Article  Google Scholar 

  25. Jolly J, Saussey J, Bettahar MM, Lavalley JC, Benazzi E (1997) Appl Catal A Gen 156:71–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of KEMCO and GTL Technology Development Consortium (Korea National Oil Corp., Daelim Industrial Co. LTD, Doosan Mecatec Co. LTD, Hyundai Engineering Co. LTD, and SK Energy Co. LTD) under “Energy & Resources Technology Development Programs” of the Ministry of Knowledge Economy, Republic of Korea (2006-11-0133-3-020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kyu Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, I., Cho, K.M., Seo, J.G. et al. Production of Middle Distillate from Synthesis Gas in a Dual-bed Reactor Through Hydrocracking of Wax Over Mesoporous Pd-Al2O3 Composite Catalyst. Catal Lett 130, 192–197 (2009). https://doi.org/10.1007/s10562-009-9854-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9854-9

Keywords

Navigation