Skip to main content
Log in

The Role of the Promoters in Cu Based Catalysts for Methanol Steam Reforming

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Effects of promoters such as zirconia and zinc oxide to copper catalysts have been studied in methanol steam reforming (MSR) reaction at 260 °C. The catalytic activity and stability of copper are improved by promoters, especially zirconia. The results of S BET and S Cu represent that both promoters can increase S BET of catalysts from 0.26 to 0.28–0.99 m2/g and S Cu of them from 0.13 to 0.21–0.25 m2/g and XRD further illustrate that they can stabilize the crystal size of copper in process of reduction and reaction. Besides, XPS results indicate that both ZnO and ZrO2 can stabilize Cu+ species and promote the catalytic activity for MSR. In addition, the rich surface hydroxyl species on ZrO2/Cu account for its superior catalytic performance to ZnO/Cu and Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Matter PH, Braden DJ, Ozkan US (2004) J Catal 223:340

    Article  CAS  Google Scholar 

  2. Reitz TL, Lee PL, Czaplewski KF, Lang JC, Popp KE, Kung HH (2001) J Catal 199:193

    Article  CAS  Google Scholar 

  3. Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsøe H (2002) Science 295:2053

    Article  CAS  Google Scholar 

  4. Clausen BS, Schiøtz J, Gråbæk L, Ovesen CV, Jacobsen KW, Nørskov JK, Topsøe H (1994) Top Catal 1:367

    Article  CAS  Google Scholar 

  5. Cheng W (1999) Acc Chem Res 32:685

    Article  CAS  Google Scholar 

  6. Ramaswamy V, Bhagwat M, Srinivas D, Ramaswamy AV (2004) Catal Today 97:63

    Article  CAS  Google Scholar 

  7. Wu G, Sun Y, Li Y, Jiao H (2003) J Mol Struct (Theochem) 626:287

    Article  CAS  Google Scholar 

  8. Liu X-M, Lu GQ, Yan ZF (2005) Appl Catal A 279:241

    Article  CAS  Google Scholar 

  9. Dongare MK, Dongare AM, Tare VB, Kemnitz E (2002) Solid State Ion 152–153:455

    Article  Google Scholar 

  10. Sun Y, Sermon PA (1993) J Chem Soc Chem Commun 1242

  11. Batyrev ED, van den Heuvel JC, Beckers J, Jansen WPA, Castricum HL (2005) J Catal 229:136

    Article  CAS  Google Scholar 

  12. Nakamura J, Nakamura I, Uchijima T, Kanai Y, Watanabe T, Saito M, Fujitani T (1996) J Catal 160:65

    Article  CAS  Google Scholar 

  13. Fujitani T, Nakamura I, Ueno S, Uchijima T, Nakamura J (1997) Appl Surf Sci 121:583

    Article  Google Scholar 

  14. Hu Z-M, Nakatsuji H (1999) Chem Phys Lett 313:14

    Article  CAS  Google Scholar 

  15. Warren BE (1941) J Appl Phys 12:375

    Article  Google Scholar 

  16. Skrzypek J, Słoczynski J, Ledakowicz S (1994) Metanol Synthesis. Polish Scientific Publishers (PWN), Warszawa, p 45

    Google Scholar 

  17. Ghijson J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA (1988) Phy Rev 38:11322

    Article  Google Scholar 

  18. Wu G, Cao Y, Fan K (2009) J Phys Chem (submitted)

  19. Okamoto Y, Fukino K, Imanaka T, Teranishi S (1983) J Phys Chem 87:3747

    Article  CAS  Google Scholar 

  20. Bruce L, Mathews JF (1982) Appl Catal 4:353

    Article  CAS  Google Scholar 

  21. Bruce L, Hope GJ, Mathews JF (1983) Appl Catal 8:349

    Article  CAS  Google Scholar 

  22. Amenomiya Y (1987) Appl Catal 30:57

    Article  CAS  Google Scholar 

  23. Fisher I, Bell AT (1998) J Catal 178:153

    Article  CAS  Google Scholar 

  24. Hamon D, Vrinat M, Breysse M, Durand B, Jebrouni M, Roubin M, Magnoux P, des Courieres T (1991) Catal Today 10:613

    Article  CAS  Google Scholar 

  25. Chinchen GC, Waugh KC, Whan DA (1986) Appl Catal 25:101

    Article  CAS  Google Scholar 

  26. Klier K (1982) Adv Catal 31:243

    Article  CAS  Google Scholar 

  27. Okamoto Y, Fukino K, Imanaka T, Yeyaniski S (1983) J Phy Chem 87:3747

    Article  CAS  Google Scholar 

  28. Chen GC, Denny PT, Parker DG (1987) Appl Catal 30:33

    Article  Google Scholar 

  29. Chen GC, Denny PT, Parker DG (1984) Prep Am Chem Soc Div Fuel Chem 29:178

    Google Scholar 

  30. Szizybalski A, Girgsdies F, Rabis A, Wang Y, Niederberger M, Ressler T (2005) J Catal 233:297

    Article  CAS  Google Scholar 

  31. Oguchi H, Kanai H, Utani K, Matsumura Y, Imamura S (2005) Appl Catal A 293:64

    Article  CAS  Google Scholar 

  32. Oguchi H, Nishiguchi T, Matsumoto T, Kanaia H, Utani K, Matsumura Y, Imamura S (2005) Appl Catal A 281:69

    Article  CAS  Google Scholar 

  33. Varazo K, Parsons FW, Ma S, Chen DA (2004) J Phys Chem B 108:18274

    Article  CAS  Google Scholar 

  34. Wu G, Wang L, Cao Y, Fan K (2006) Appl Sur Sci 253:974

    Article  CAS  Google Scholar 

  35. Castricum HL, Bakker H, Linden B, Poels EK (2001) J Phys Chem B 105:7928

    Article  CAS  Google Scholar 

  36. Fisher IA, Bell AT (1999) J Catal 184:357

    Article  CAS  Google Scholar 

  37. Wu G, Wang L, Cao Y, Fan K (2009) Appl Catal (In press)

  38. Laborde H, Lamy TM, Lamy C (1994) J Appl Electrochem 24:219

    CAS  Google Scholar 

Download references

Acknowledgments

The financial supports from National Science Foundation of China (Grant No. 20503005, 20473021, 20421303, 20203003) and Shanghai Leading Academic Discipline Project (P1501) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Sheng Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, GS., Mao, DS., Lu, GZ. et al. The Role of the Promoters in Cu Based Catalysts for Methanol Steam Reforming. Catal Lett 130, 177–184 (2009). https://doi.org/10.1007/s10562-009-9847-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9847-8

Keywords

Navigation