Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Novel Evidence on the Role of the Nucleophilic Intermediate Complex in the Orito-Reaction: Unexpected Inversion in the Enantioselective Hydrogenation of 2,2,2-Trifluoroacetophenone on Pt-Cinchona Chiral Catalyst Using Continuous-Flow Fixed-Bed Reactor

Abstract

The enantioselective hydrogenation of 2,2,2,-trifluoroacetophenone over Pt/Al2O3 catalysts modified by cinchona alkaloids was investigated for the first time using continuous-flow fixed-bed reactor system in toluene/AcOH 9/1 solvent mixture in absence and presence of 0.1 v/v% trifluoroacetic acid (TFA). The enantioselective hydrogenations yielded the (R)-product in excess on Pt–CD, Pt–CN, Pt–QN and Pt–QD catalysts in toluene/AcOH mixture; consequently, unexpected inversion took place on the Pt–CN and Pt–QD catalysts. Hydrogenation in the presence of 0.1% (v/v) TFA follows the general rule of the Orito reaction, according to which the products formed in excess are (R)-alcohols on Pt–CD and Pt–QN and (S)-alcohols on Pt–CN and Pt–QD. Since there is no inversion in the presence of TFA, the observed unexpected inversion can be interpreted on the basis of the nucleophilic intermediate complex.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Ertl G, Knözinger H, Weitkamp J (eds) (1997) Handbook of heterogeneous catalysis. Wiley, New York

  2. 2.

    Sheldon RA, van Bekkum H (eds) (2001) Fine chemicals through heterogeneous catalysis. Wiley, Weinheim

  3. 3.

    Blaser HU, Schmidt E (eds) (2004) Asymmetric catalysis on industrial scale. Challenges, approaches and solutions. Wiley-VCH, Weinheim

  4. 4.

    Molnár Á, Felföldi K, Bartók M (1981) Tetrahedron 37:2149

  5. 5.

    Molnár Á, Bucsi I, Bartók M, Resofszki G, Gy Gáti (1991) J Catal 129:303

  6. 6.

    List B (Guest Ed) (2007) Organocatalysis. Chem Rev 107: 5413

  7. 7.

    Gy Szöllősi, Hanaoka T, Niwa S, Mizukami F, Bartók M (2005) J Catal 231:480

  8. 8.

    Klabunovskii E, Smith GV, Zsigmond Á (2006) Heterogeneous enantioselective hydrogenation. Springer, Dordrecht

  9. 9.

    Bartók M (2006) Curr Org Chem 10:1533

  10. 10.

    Blaser HU, Studer M (2007) Acc Chem Res 40:1348

  11. 11.

    Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863

  12. 12.

    Ding K, Uozumi Y (eds) (2008) Handbook of asymmetric heterogeneous catalysis. Wiley-VCH, Weinheim

  13. 13.

    Heitbaum M, Glorius F, Escher I (2006) Angew Chem Int Ed Engl 45:4732

  14. 14.

    Sutyinszki M, Szöri K, Felföldi K, Bartók M (2002) Catal Commun 3:125

  15. 15.

    Szöri K, Sutyinszki M, Felföldi K, Bartók M (2002) Appl Catal A:Gen 237:275

  16. 16.

    Balázsik K, Bartók M (2004) J Catal 224:463

  17. 17.

    Studer M, Burkhardt S, Blaser HU (1999) Chem Commun 1727

  18. 18.

    Schürch M, Künzle N, Mallat T, Baiker A (1998) J Catal 176:569

  19. 19.

    von Arx M, Mallat T, Baiker A (2001) Tetrahedron Asymmetr 12:3089

  20. 20.

    von Arx M, Bürgi T, Mallat T, Baiker A (2002) Chem Eur J 8:1430

  21. 21.

    Exner C, Pfaltz A, Studer M, Blaser HU (2003) Adv Synth Catal 345:1253

  22. 22.

    Wells PB, Wells RPK (2000) In: De Vos DE, Vankelecom IFJ, Jacobs PA (eds) Chiral catalyst immobilization and recycling. Wiley-VCH, Weinheim, p 123

  23. 23.

    Studer M, Blaser HU, Exner C (2003) Adv Synth Catal 345:45

  24. 24.

    Burgi T, Baiker A (2004) Acc Chem Res 37:909

  25. 25.

    Baiker A (2005) Catal Today 100:159

  26. 26.

    Murzin DY, Maki-Arvela P, Toukoniitty E, Salmi T (2005) Catal Rev Sci Eng 47:175

  27. 27.

    Lavoie S, Laliberte MA, Temprano I, McBreen PH (2006) J Am Chem Soc 128:7588

  28. 28.

    Zaera F (2008) J Phys Chem C 112:16196

  29. 29.

    Ma Z, Lee I, Zaera F (2007) J Am Chem Soc 129:16083

  30. 30.

    Ma Z, Zaera F (2006) J Am Chem Soc 128:16414

  31. 31.

    Bakos J, Szabó S, Bartók M, Kálmán E (2002) J Electroanal Chem 532:113

  32. 32.

    Gao F, Chen L, Garland M (2006) J Catal 238:402

  33. 33.

    Meier DM, Mallat T, Ferri D, Baiker A (2006) J Catal 244:260

  34. 34.

    Meier DM, Ferri D, Mallat T, Baiker A (2007) J Catal 248:68

  35. 35.

    Stephenson P, Licence P, Ross SK, Poliakoff M (2004) Green Chem 6:521

  36. 36.

    Stephenson P, Kondor B, Licence P, Scovell K, Ross SK, Poliakoff M (2006) Adv Synth Catal 348:1605

  37. 37.

    Gy Szöllősi, Hermán B, Fülöp F, Bartók M (2006) React Kinet Catal Lett 88:391

  38. 38.

    Hermán B, Gy Szöllősi, Fülöp F, Bartók M (2007) Appl Catal A:Gen 331:39

  39. 39.

    Balázsik K, Sz Cserényi, Gy Szöllősi, Fülöp F, Bartók M (2008) Catal Lett 125:401

  40. 40.

    Gy Szöllősi, Sz Cserényi, Fülöp F, Bartók M (2008) J Catal 260:245

  41. 41.

    Mallat T, Bodmer M, Baiker A (1997) Catal Lett 44:95

  42. 42.

    Balázsik K, Török B, Felföldi K, Bartók M (1999) Ultrason Sonochem 5:149

  43. 43.

    Bodmer M, Mallat T, Baiker A (1997) J Catal 168:183

  44. 44.

    Bodmer M, Mallat T, Baiker A (1998) In: Herkes FE, Herkes FE (eds) Catalysis of organic reactions. Marcel Dekker, New York, p 75

  45. 45.

    Török B, Balázsik K, Gy Szöllösi, Felföldi K, Bartók M (1999) Chirality 11:470

  46. 46.

    Varga T, Felföldi K, Forgó P, Bartók M (2004) J Mol Catal A: Chem 216:181

  47. 47.

    Szőri K, Balázsik K, Sz Cserényi, Gy Szöllősi, Bartók M (2009) Appl Catal A:Gen 362:178

  48. 48.

    Bartók M, Gy Szöllősi, Balázsik K, Bartók T (2002) J Catal 205:168

  49. 49.

    Török B, Felföldi K, Szakonyi G, Bartók M (1997) Ultrason Sonochem 4:301

  50. 50.

    Török B, Balázsik K, Török M, Gy Szöllösi, Bartók M (2000) Ultrason Sonochem 7:151

  51. 51.

    Thales Nanotechnology H-Cube™ flow hydrogenator, see http://www.thalesnano.com

  52. 52.

    Bartók M, Bartók T, Gy Szöllösi, Felföldi K (1999) Catal Lett 61:57

  53. 53.

    Bartók M, Szabó PT, Bartók T, Gy Szöllösi (2000) Rapid Commun Mass Spectrom 14:509

  54. 54.

    Bartók M, Sutyinszki M, Felföldi K, Szöllősi Gy (2002) Chem Commun 1130

  55. 55.

    Bartók M, Sutyinszki M, Felföldi K (2003) J Catal 220:207

  56. 56.

    Bartók M, Sutyinszki M, Bucsi I, Felföldi K, Gy Szöllősi, Bartha F, Bartók T (2005) J Catal 231:33

  57. 57.

    Bartók M, Balázsik K, Bucsi I, Gy Szöllősi (2006) J Catal 239:74

  58. 58.

    von Arx M, Mallat T, Baiker A (2001) Angew Chem Int Ed Engl 40:2302

  59. 59.

    Hess R, Vargas A, Mallat T, Bürgi T, Baiker A (2004) J Catal 222:117

  60. 60.

    Bonalumi N, Vargas A, Ferri D, Burgi T, Mallat T, Baiker A (2005) J Am Chem Soc 127:8467

  61. 61.

    Diezi S, Reimann S, Bonalumi N, Mallat T, Baiker A (2006) J Catal 239:255

  62. 62.

    Bartók M (2009) Chem Rev. doi: 10.1021/cr9002352

  63. 63.

    Augustine RL, Tanielyan SK (1996) J Mol Catal A:Chem 112:93

  64. 64.

    Margitfalvi JL, Hegedűs M (1996) J Mol Catal A:Chem 107:281

  65. 65.

    Vayner G, Houk KN, Sun YK (2004) J Am Chem Soc 126:199

  66. 66.

    Carneiro JWD, de Oliveira CDB, Passos FB, Aranda DAG, de Souza PRN, Antunes OAC (2005) J Mol Catal A:Chem 226:221

  67. 67.

    Martinek TA, Varga T, Fülöp F, Bartók M (2007) J Catal 246:266

  68. 68.

    Balázsik K, Martinek TA, Bucsi I, Gy Szöllősi, Fogassy G, Bartók M, Olah GA (2007) J Mol Catal A:Chem 272:265

  69. 69.

    Martinek TA, Varga T, Balázsik K, Gy Szöllősi, Fülöp F, Bartók M (2008) J Catal 255:296

  70. 70.

    Vargas A, Ferri D, Baiker A (2005) J Catal 236:1

  71. 71.

    Vargas A, Hoxha F, Bonalumi N, Mallat T, Baiker A (2006) J Catal 240:203

  72. 72.

    Vargas A, Ferri D, Bonalumi N, Mallat T, Baiker A (2007) Angew Chem Int Ed Engl 46:3905

  73. 73.

    Laliberte MA, Lavoie S, Hammer B, Mahieu G, McBreen PH (2008) J Am Chem Soc 130:5386

Download references

Acknowledgments

Financial support by the Hungarian National Science Foundation (OTKA Grant K 72065) is highly appreciated. The project was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (Gy. Sz.).

Author information

Correspondence to Mihály Bartók.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Szőllősi, G., Cserényi, S. & Bartók, M. Novel Evidence on the Role of the Nucleophilic Intermediate Complex in the Orito-Reaction: Unexpected Inversion in the Enantioselective Hydrogenation of 2,2,2-Trifluoroacetophenone on Pt-Cinchona Chiral Catalyst Using Continuous-Flow Fixed-Bed Reactor. Catal Lett 134, 264–269 (2010). https://doi.org/10.1007/s10562-009-0242-2

Download citation

Keywords

  • Asymmetric hydrogenation
  • Platinum
  • Cinchona alkaloids
  • Trifluoroacetophenone
  • Continuous-flow fixed-bed reactor
  • Unexpected inversion