Catalysis Letters

, Volume 134, Issue 3–4, pp 264–269 | Cite as

Novel Evidence on the Role of the Nucleophilic Intermediate Complex in the Orito-Reaction: Unexpected Inversion in the Enantioselective Hydrogenation of 2,2,2-Trifluoroacetophenone on Pt-Cinchona Chiral Catalyst Using Continuous-Flow Fixed-Bed Reactor

  • György Szőllősi
  • Szabolcs Cserényi
  • Mihály Bartók
Article

Abstract

The enantioselective hydrogenation of 2,2,2,-trifluoroacetophenone over Pt/Al2O3 catalysts modified by cinchona alkaloids was investigated for the first time using continuous-flow fixed-bed reactor system in toluene/AcOH 9/1 solvent mixture in absence and presence of 0.1 v/v% trifluoroacetic acid (TFA). The enantioselective hydrogenations yielded the (R)-product in excess on Pt–CD, Pt–CN, Pt–QN and Pt–QD catalysts in toluene/AcOH mixture; consequently, unexpected inversion took place on the Pt–CN and Pt–QD catalysts. Hydrogenation in the presence of 0.1% (v/v) TFA follows the general rule of the Orito reaction, according to which the products formed in excess are (R)-alcohols on Pt–CD and Pt–QN and (S)-alcohols on Pt–CN and Pt–QD. Since there is no inversion in the presence of TFA, the observed unexpected inversion can be interpreted on the basis of the nucleophilic intermediate complex.

Graphical Abstract

Keywords

Asymmetric hydrogenation Platinum Cinchona alkaloids Trifluoroacetophenone Continuous-flow fixed-bed reactor Unexpected inversion 

References

  1. 1.
    Ertl G, Knözinger H, Weitkamp J (eds) (1997) Handbook of heterogeneous catalysis. Wiley, New YorkGoogle Scholar
  2. 2.
    Sheldon RA, van Bekkum H (eds) (2001) Fine chemicals through heterogeneous catalysis. Wiley, WeinheimGoogle Scholar
  3. 3.
    Blaser HU, Schmidt E (eds) (2004) Asymmetric catalysis on industrial scale. Challenges, approaches and solutions. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Molnár Á, Felföldi K, Bartók M (1981) Tetrahedron 37:2149CrossRefGoogle Scholar
  5. 5.
    Molnár Á, Bucsi I, Bartók M, Resofszki G, Gy Gáti (1991) J Catal 129:303CrossRefGoogle Scholar
  6. 6.
    List B (Guest Ed) (2007) Organocatalysis. Chem Rev 107: 5413Google Scholar
  7. 7.
    Gy Szöllősi, Hanaoka T, Niwa S, Mizukami F, Bartók M (2005) J Catal 231:480CrossRefGoogle Scholar
  8. 8.
    Klabunovskii E, Smith GV, Zsigmond Á (2006) Heterogeneous enantioselective hydrogenation. Springer, DordrechtCrossRefGoogle Scholar
  9. 9.
    Bartók M (2006) Curr Org Chem 10:1533CrossRefGoogle Scholar
  10. 10.
    Blaser HU, Studer M (2007) Acc Chem Res 40:1348CrossRefGoogle Scholar
  11. 11.
    Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863CrossRefGoogle Scholar
  12. 12.
    Ding K, Uozumi Y (eds) (2008) Handbook of asymmetric heterogeneous catalysis. Wiley-VCH, WeinheimGoogle Scholar
  13. 13.
    Heitbaum M, Glorius F, Escher I (2006) Angew Chem Int Ed Engl 45:4732CrossRefGoogle Scholar
  14. 14.
    Sutyinszki M, Szöri K, Felföldi K, Bartók M (2002) Catal Commun 3:125CrossRefGoogle Scholar
  15. 15.
    Szöri K, Sutyinszki M, Felföldi K, Bartók M (2002) Appl Catal A:Gen 237:275CrossRefGoogle Scholar
  16. 16.
    Balázsik K, Bartók M (2004) J Catal 224:463CrossRefGoogle Scholar
  17. 17.
    Studer M, Burkhardt S, Blaser HU (1999) Chem Commun 1727Google Scholar
  18. 18.
    Schürch M, Künzle N, Mallat T, Baiker A (1998) J Catal 176:569CrossRefGoogle Scholar
  19. 19.
    von Arx M, Mallat T, Baiker A (2001) Tetrahedron Asymmetr 12:3089CrossRefGoogle Scholar
  20. 20.
    von Arx M, Bürgi T, Mallat T, Baiker A (2002) Chem Eur J 8:1430CrossRefGoogle Scholar
  21. 21.
    Exner C, Pfaltz A, Studer M, Blaser HU (2003) Adv Synth Catal 345:1253CrossRefGoogle Scholar
  22. 22.
    Wells PB, Wells RPK (2000) In: De Vos DE, Vankelecom IFJ, Jacobs PA (eds) Chiral catalyst immobilization and recycling. Wiley-VCH, Weinheim, p 123CrossRefGoogle Scholar
  23. 23.
    Studer M, Blaser HU, Exner C (2003) Adv Synth Catal 345:45CrossRefGoogle Scholar
  24. 24.
    Burgi T, Baiker A (2004) Acc Chem Res 37:909CrossRefGoogle Scholar
  25. 25.
    Baiker A (2005) Catal Today 100:159CrossRefGoogle Scholar
  26. 26.
    Murzin DY, Maki-Arvela P, Toukoniitty E, Salmi T (2005) Catal Rev Sci Eng 47:175CrossRefGoogle Scholar
  27. 27.
    Lavoie S, Laliberte MA, Temprano I, McBreen PH (2006) J Am Chem Soc 128:7588CrossRefGoogle Scholar
  28. 28.
    Zaera F (2008) J Phys Chem C 112:16196CrossRefGoogle Scholar
  29. 29.
    Ma Z, Lee I, Zaera F (2007) J Am Chem Soc 129:16083CrossRefGoogle Scholar
  30. 30.
    Ma Z, Zaera F (2006) J Am Chem Soc 128:16414CrossRefGoogle Scholar
  31. 31.
    Bakos J, Szabó S, Bartók M, Kálmán E (2002) J Electroanal Chem 532:113CrossRefGoogle Scholar
  32. 32.
    Gao F, Chen L, Garland M (2006) J Catal 238:402CrossRefGoogle Scholar
  33. 33.
    Meier DM, Mallat T, Ferri D, Baiker A (2006) J Catal 244:260CrossRefGoogle Scholar
  34. 34.
    Meier DM, Ferri D, Mallat T, Baiker A (2007) J Catal 248:68CrossRefGoogle Scholar
  35. 35.
    Stephenson P, Licence P, Ross SK, Poliakoff M (2004) Green Chem 6:521CrossRefGoogle Scholar
  36. 36.
    Stephenson P, Kondor B, Licence P, Scovell K, Ross SK, Poliakoff M (2006) Adv Synth Catal 348:1605CrossRefGoogle Scholar
  37. 37.
    Gy Szöllősi, Hermán B, Fülöp F, Bartók M (2006) React Kinet Catal Lett 88:391CrossRefGoogle Scholar
  38. 38.
    Hermán B, Gy Szöllősi, Fülöp F, Bartók M (2007) Appl Catal A:Gen 331:39CrossRefGoogle Scholar
  39. 39.
    Balázsik K, Sz Cserényi, Gy Szöllősi, Fülöp F, Bartók M (2008) Catal Lett 125:401CrossRefGoogle Scholar
  40. 40.
    Gy Szöllősi, Sz Cserényi, Fülöp F, Bartók M (2008) J Catal 260:245CrossRefGoogle Scholar
  41. 41.
    Mallat T, Bodmer M, Baiker A (1997) Catal Lett 44:95CrossRefGoogle Scholar
  42. 42.
    Balázsik K, Török B, Felföldi K, Bartók M (1999) Ultrason Sonochem 5:149CrossRefGoogle Scholar
  43. 43.
    Bodmer M, Mallat T, Baiker A (1997) J Catal 168:183CrossRefGoogle Scholar
  44. 44.
    Bodmer M, Mallat T, Baiker A (1998) In: Herkes FE, Herkes FE (eds) Catalysis of organic reactions. Marcel Dekker, New York, p 75Google Scholar
  45. 45.
    Török B, Balázsik K, Gy Szöllösi, Felföldi K, Bartók M (1999) Chirality 11:470CrossRefGoogle Scholar
  46. 46.
    Varga T, Felföldi K, Forgó P, Bartók M (2004) J Mol Catal A: Chem 216:181CrossRefGoogle Scholar
  47. 47.
    Szőri K, Balázsik K, Sz Cserényi, Gy Szöllősi, Bartók M (2009) Appl Catal A:Gen 362:178CrossRefGoogle Scholar
  48. 48.
    Bartók M, Gy Szöllősi, Balázsik K, Bartók T (2002) J Catal 205:168CrossRefGoogle Scholar
  49. 49.
    Török B, Felföldi K, Szakonyi G, Bartók M (1997) Ultrason Sonochem 4:301CrossRefGoogle Scholar
  50. 50.
    Török B, Balázsik K, Török M, Gy Szöllösi, Bartók M (2000) Ultrason Sonochem 7:151CrossRefGoogle Scholar
  51. 51.
    Thales Nanotechnology H-Cube™ flow hydrogenator, see http://www.thalesnano.com
  52. 52.
    Bartók M, Bartók T, Gy Szöllösi, Felföldi K (1999) Catal Lett 61:57CrossRefGoogle Scholar
  53. 53.
    Bartók M, Szabó PT, Bartók T, Gy Szöllösi (2000) Rapid Commun Mass Spectrom 14:509CrossRefGoogle Scholar
  54. 54.
    Bartók M, Sutyinszki M, Felföldi K, Szöllősi Gy (2002) Chem Commun 1130Google Scholar
  55. 55.
    Bartók M, Sutyinszki M, Felföldi K (2003) J Catal 220:207CrossRefGoogle Scholar
  56. 56.
    Bartók M, Sutyinszki M, Bucsi I, Felföldi K, Gy Szöllősi, Bartha F, Bartók T (2005) J Catal 231:33CrossRefGoogle Scholar
  57. 57.
    Bartók M, Balázsik K, Bucsi I, Gy Szöllősi (2006) J Catal 239:74CrossRefGoogle Scholar
  58. 58.
    von Arx M, Mallat T, Baiker A (2001) Angew Chem Int Ed Engl 40:2302CrossRefGoogle Scholar
  59. 59.
    Hess R, Vargas A, Mallat T, Bürgi T, Baiker A (2004) J Catal 222:117CrossRefGoogle Scholar
  60. 60.
    Bonalumi N, Vargas A, Ferri D, Burgi T, Mallat T, Baiker A (2005) J Am Chem Soc 127:8467CrossRefGoogle Scholar
  61. 61.
    Diezi S, Reimann S, Bonalumi N, Mallat T, Baiker A (2006) J Catal 239:255CrossRefGoogle Scholar
  62. 62.
    Bartók M (2009) Chem Rev. doi: 10.1021/cr9002352
  63. 63.
    Augustine RL, Tanielyan SK (1996) J Mol Catal A:Chem 112:93CrossRefGoogle Scholar
  64. 64.
    Margitfalvi JL, Hegedűs M (1996) J Mol Catal A:Chem 107:281CrossRefGoogle Scholar
  65. 65.
    Vayner G, Houk KN, Sun YK (2004) J Am Chem Soc 126:199CrossRefGoogle Scholar
  66. 66.
    Carneiro JWD, de Oliveira CDB, Passos FB, Aranda DAG, de Souza PRN, Antunes OAC (2005) J Mol Catal A:Chem 226:221CrossRefGoogle Scholar
  67. 67.
    Martinek TA, Varga T, Fülöp F, Bartók M (2007) J Catal 246:266CrossRefGoogle Scholar
  68. 68.
    Balázsik K, Martinek TA, Bucsi I, Gy Szöllősi, Fogassy G, Bartók M, Olah GA (2007) J Mol Catal A:Chem 272:265CrossRefGoogle Scholar
  69. 69.
    Martinek TA, Varga T, Balázsik K, Gy Szöllősi, Fülöp F, Bartók M (2008) J Catal 255:296CrossRefGoogle Scholar
  70. 70.
    Vargas A, Ferri D, Baiker A (2005) J Catal 236:1CrossRefGoogle Scholar
  71. 71.
    Vargas A, Hoxha F, Bonalumi N, Mallat T, Baiker A (2006) J Catal 240:203CrossRefGoogle Scholar
  72. 72.
    Vargas A, Ferri D, Bonalumi N, Mallat T, Baiker A (2007) Angew Chem Int Ed Engl 46:3905CrossRefGoogle Scholar
  73. 73.
    Laliberte MA, Lavoie S, Hammer B, Mahieu G, McBreen PH (2008) J Am Chem Soc 130:5386CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • György Szőllősi
    • 1
  • Szabolcs Cserényi
    • 2
  • Mihály Bartók
    • 1
    • 2
  1. 1.Stereochemistry Research Group of the Hungarian Academy of SciencesSzegedHungary
  2. 2.Department of Organic ChemistryUniversity of SzegedSzegedHungary

Personalised recommendations