Skip to main content

Advertisement

Log in

Hydrogen Production by Steam Reforming of Liquefied Natural Gas Over Mesoporous Ni-Al2O3 Composite Catalyst Prepared by a Single-step Non-ionic Surfactant-templating Method

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A mesoporous Ni-Al2O3 composite catalyst (Ni-A-NS) was prepared by a single-step non-ionic surfactant-templating method for use in hydrogen production by steam reforming of liquefied natural gas (LNG). For comparison, a nickel catalyst supported on mesoporous alumina (Ni/A-NS) was also prepared by an impregnation method. The effect of physicochemical properties on the performance of Ni-A-NS catalyst in the steam reforming of LNG was investigated. Ni-A-NS catalyst retained superior textural properties compared to Ni/A-NS catalyst. Nickel oxide species were highly dispersed on the surface of both Ni/A-NS and Ni-A-NS catalysts through the formation of surface nickel aluminate phase. Although both Ni/A-NS and Ni-A-NS catalysts exhibited a stable catalytic performance, Ni-A-NS catalyst showed a better catalytic performance than Ni/A-NS catalyst in the steam reforming of LNG. High nickel surface area and high nickel dispersion of Ni-A-NS catalyst played an important role in enhancing the dehydrogenation reaction of hydrocarbon species and the gasification reaction of adsorbed carbon species in the steam reforming of LNG. High reducibility of Ni-A-NS catalyst was also responsible for its high catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schrope M (2001) Nature 414:682–684

    Article  CAS  Google Scholar 

  2. Navarro RM, Pena MA, Fierro JLG (2007) Chem Rev 107:3952–3991

    Article  CAS  Google Scholar 

  3. Simpson AP, Lutz AE (2007) Int J Hydrog Energy 32:4811–4820

    Article  CAS  Google Scholar 

  4. Maluf SS, Assaf EM (2009) Fuel 88:1547–1553

    Article  CAS  Google Scholar 

  5. Seo YT, Seo DJ, Jeong JH, Yoon WL (2006) J Power Sources 163:119–124

    Article  CAS  Google Scholar 

  6. Armor JN (1999) Appl Catal A: Gen 176:159–176

    Article  CAS  Google Scholar 

  7. Seo JG, Youn MH, Park S, Lee J, Lee SH, Lee H, Song IK (2008) Korean J Chem Eng 25:95–98

    Article  CAS  Google Scholar 

  8. Berman A, Karn RK, Epstein M (2005) Appl Catal A: Gen 282:73–83

    Article  CAS  Google Scholar 

  9. Kępiński L, Stasińska B, Borowiecke B (2000) Carbon 38:1845–1856

    Article  Google Scholar 

  10. Borowiecki T, Gołębiowski A, Stasińska B (1997) Appl Catal A: Gen 153:141–156

    Article  CAS  Google Scholar 

  11. Yokota O, Oku Y, Sano T, Hasegawa N, Matsunami J, Tsuji M, Tamaura Y (2000) Int J Hydrog Energy 25:81–86

    Article  CAS  Google Scholar 

  12. Čejka J (2003) Appl Catal A: Gen 254:327–338

    Article  Google Scholar 

  13. Čejka J, Žilkova N, Kaluža L (2002) Stud Surf Sci Catal 141:243–250

    Article  Google Scholar 

  14. Trueba M, Trasatti SP (2005) Eur J Inorg Chem 17:3393–3403

    Article  Google Scholar 

  15. Sehested J, Gelten AP, Remediakis IN, Bengaard H, Nørskov JK (2004) J Catal 223:432–443

    Article  CAS  Google Scholar 

  16. Rostrup-Nielsen JR (2000) Catal Today 63:159–164

    Article  CAS  Google Scholar 

  17. Bartholomew CH, Pannell RB, Fowler RW (1983) J Catal 79:34–46

    Article  CAS  Google Scholar 

  18. Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK (2008) Korean J Chem Eng 25:41–45

    Article  CAS  Google Scholar 

  19. Seo JG, Youn MH, Park S, Jung JC, Kim P, Song IK (2009) J Power Sources 186:178–184

    Article  CAS  Google Scholar 

  20. Seo JG, Youn MH, Song IK (2009) Int J Hydrog Energy 34:1809–1817

    Article  CAS  Google Scholar 

  21. Seo JG, Youn MH, Lee H-I, Kim JJ, Yang E, Chung JS, Kim P, Song IK (2008) Chem Eng J 141:298–304

    Article  CAS  Google Scholar 

  22. Ray JC, You K-S, Ahn J-W, Ahn W-S (2007) Micropor Mesopor Mater 100:183–190

    Article  CAS  Google Scholar 

  23. Yada M, Hiyoshi H, Ohe K, Machida M, Kijima T (1997) Inorg Chem 36:5565–5569

    Article  CAS  Google Scholar 

  24. Bagshaw SA, Pinnavaia TJ (1996) Angew Chem Int Ed 35:1102–1105

    Article  CAS  Google Scholar 

  25. González-Peńa V, Márquez-Alvarez C, Díaz I, Grande M, Blasco T, Pérez-Pariente J (2005) Micropor Mesopor Mater 80:173–182

    Article  Google Scholar 

  26. Tanev PT, Pinnavaia TJ (1996) Chem Mater 8:2068–2079

    Article  CAS  Google Scholar 

  27. Kim J-H, Suh DJ, Park T-J, Kim K-L (2000) Appl Catal A: Gen 197:191–200

    Article  CAS  Google Scholar 

  28. Pelletier L, Liu DDS (2007) Appl Catal A: Gen 317:293–298

    Article  CAS  Google Scholar 

  29. Park Y, Kang T, Lee J, Kim P, Kim H, Yi J (2004) Catal Today 97:195–203

    Article  CAS  Google Scholar 

  30. Voort PVD, Benjelloun M, Vansant EF (2003) J Phys Chem B 106:9027–9032

    Article  Google Scholar 

  31. Ross JRH, Steel MCF, Zeith-Isfahani A (1978) J Catal 52:280–290

    Article  CAS  Google Scholar 

  32. Dimotakis ED, Pinnavaia TJ (1990) Inorg Chem 29:2393–2394

    Article  CAS  Google Scholar 

  33. Rynkowski JM, Paryczak T, Lenik M (1992) Appl Catal A: Gen 106:73–82

    Article  Google Scholar 

  34. Youn MH, Seo JG, Kim P, Song IK (2007) J Mol Catal A: Chem 261:276–281

    Article  CAS  Google Scholar 

  35. Kharat AN, Pendleton P, Badalyan A, Abedini M, Amini MM (2002) J Catal 205:7–15

    Article  CAS  Google Scholar 

  36. Cimino A, Jacono ML, Schiavello M (1971) J Phys Chem 75:1044–1050

    Article  CAS  Google Scholar 

  37. Trimm DL (1987) Stud Surf Sci Catal 36:39–50

    Article  Google Scholar 

  38. Wei J, Iglesia E (2004) J Catal 224:370–383

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge support from the Seoul Renewable Energy Research Consortium (Seoul R&BD Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kyu Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, J.G., Youn, M.H., Park, D.R. et al. Hydrogen Production by Steam Reforming of Liquefied Natural Gas Over Mesoporous Ni-Al2O3 Composite Catalyst Prepared by a Single-step Non-ionic Surfactant-templating Method. Catal Lett 132, 395–401 (2009). https://doi.org/10.1007/s10562-009-0139-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0139-0

Keywords

Navigation