Skip to main content
Log in

Magnetic Nanoparticle Polymer Brush Catalysts: Alternative Hybrid Organic/Inorganic Structures to Obtain High, Local Catalyst Loadings for Use in Organic Transformations

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A new class of hybrid organic/inorganic molecular catalysts with high, local catalyst concentrations is demonstrated by supporting organic and organometallic catalysts on magnetic nanoparticle based polymer brushes (MPB). Poly(styrene) brushes containing Co(III)-salen or piperazine side chains are prepared via atom-transfer radical polymerization (ATRP) from Fe3O4 nanoparticles modified with appropriate initiator molecules. The polymer brush architecture promotes the cooperative interactions required for Co-salen catalyzed ring-opening of epoxides as demonstrated in the hydrolytic kinetic resolution of rac-epichlorohydrin. In addition, the piperazine functionalized MPB catalyst contains the high catalyst concentration that is required for promoting the Knoevenagel condensation of benzaldehyde and malononitrile with this type of amine catalyst. All the MPB catalysts were easily removed from solution via application of a magnetic field, allowing straightforward recovery and reuse. The versatile MPB architecture can be used to create a variety of recoverable supported organic or organometallic catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gladysz JA (2002) Chem Rev 102:3215

    Article  CAS  Google Scholar 

  2. Benaglia M, Puglisi A, Cozzi F (2003) Chem Rev 103:3401

    Article  CAS  Google Scholar 

  3. Hoffmann F, Cornelius M, Morell J, Froba M (2006) Angew Chem Int Ed 45:3216

    Article  CAS  Google Scholar 

  4. Wight AP, Davis ME (2002) Chem Rev 102:3589

    Article  CAS  Google Scholar 

  5. Fan J, Gao Y (2006) J Exp Nanosci 1:457

    Article  CAS  Google Scholar 

  6. Gill CS, Price BA, Jones CW (2007) J Catal 251:145

    Article  CAS  Google Scholar 

  7. Luo SZ, Zheng XX, Xu H, Mi XL, Zhang L, Cheng JP (2007) Adv Synth Catal 349:2431

    Article  CAS  Google Scholar 

  8. O’ Dalaigh C, Corr SA, Gun’ko Y, Connon SJ (2007) Angew Chem Int Ed 46:4329

    Article  Google Scholar 

  9. Phan NTS, Gill CS, Nguyen JV, Zhang ZJ, Jones CW (2006) Angew Chem Int Ed 45:2209

    Article  CAS  Google Scholar 

  10. Phan NTS, Jones CW (2006) J Mol Catal A Chem 253:123

    Article  CAS  Google Scholar 

  11. Ding SJ, Xing YC, Radosz M, Shen YQ (2006) Macromolecules 39:6399

    Article  CAS  Google Scholar 

  12. Duanmu C, Saha I, Zheng Y, Goodson BM, Gao Y (2006) Chem Mater 18:5973

    Article  CAS  Google Scholar 

  13. Hu AG, Yee GT, Lin WB (2005) J Am Chem Soc 127:12486

    Article  CAS  Google Scholar 

  14. Lv GH, Mai WP, Jin R, Gao LX (2008) Synlett 1:418

    Google Scholar 

  15. Stevens PD, Fan JD, Gardimalla HMR, Yen M, Gao Y (2005) Org Lett 7:2085

    Article  CAS  Google Scholar 

  16. Yoon TJ, Lee W, Oh YS, Lee JK (2003) New J Chem 27:227

    Article  CAS  Google Scholar 

  17. Zheng Y, Stevens PD, Gao Y (2006) J Org Chem 71:537

    Article  CAS  Google Scholar 

  18. Abu-Reziq R, Alper H, Wang D, Post ML (2006) J Am Chem Soc 128:5279

    Article  CAS  Google Scholar 

  19. Heuze K, Rosario-Amorin D, Nlate S, Gaboyard M, Bouter A, Clerac R (2008) New J Chem 32:383

    Article  CAS  Google Scholar 

  20. Brittain WJ, Minko S (2007) J Polym Sci Polym Chem 45:3505

    Article  CAS  Google Scholar 

  21. Edmondson S, Osborne VL, Huck WTS (2004) Chem Soc Rev 33:14

    Article  CAS  Google Scholar 

  22. Zhao B, Brittain WJ (2000) Prog Polym Sci 25:677

    Article  CAS  Google Scholar 

  23. Zhao B, Jiang X, Li D, Jiang X, O’Lenick TG, Li B, Li CY (2008) J Polym Sci Polym Chem 46:3438

    Article  CAS  Google Scholar 

  24. Jain P, Dai JH, Baker GL, Bruening ML (2008) Macromolecules 41:8413

    Article  CAS  Google Scholar 

  25. García I, Tercjak A, Zafeiropoulos NE, Stamm M, Mondragon I (2007) Macromol Rapid Commun 28:2361

    Article  Google Scholar 

  26. Gelbrich T, Feyen M, Schmidt AM (2006) Macromolecules 39:3469

    Article  CAS  Google Scholar 

  27. Wang WC, Neoh KG, Kang ET (2006) Macromol Rapid Commun 27:1665

    Article  CAS  Google Scholar 

  28. Jacobsen EN (2000) Acc Chem Res 33:421

    Article  CAS  Google Scholar 

  29. Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen EN (1997) Science 277:936

    Article  CAS  Google Scholar 

  30. Nielsen LPC, Stevenson CP, Blackmond DG, Jacobsen EN (2004) J Am Chem Soc 126:1360

    Article  CAS  Google Scholar 

  31. Sun YB, Ding XB, Zheng ZH, Cheng X, Hu XH, Peng YX (2007) Eur Polym J 43:762

    Article  CAS  Google Scholar 

  32. Marsh A, Khan A, Garcia M, Haddleton DM (2000) Chem Commun 20:83

    Google Scholar 

  33. Zheng XL, Jones CW, Weck M (2006) Chem Eur J 12:576

    Article  Google Scholar 

  34. Zheng XL, Jones CW, Weck M (2008) Adv Synth Catal 350:255

    Article  CAS  Google Scholar 

  35. Gill CS, Venkatasubbaiah K, Phan NTS, Weck M, Jones CW (2008) Chem Eur J 14:7306

    Article  CAS  Google Scholar 

  36. Gross A, Maier G, Nuyken O (1996) Macromol Chem Phys 197:2811

    Article  CAS  Google Scholar 

  37. Pangborn AB, Giardello MA, Grubbs RH, Rosen RK, Timmers FJ (1996) Organometallics 15:1518

    Article  CAS  Google Scholar 

  38. Holbach M, Weck M (2006) J Org Chem 71:1825

    Article  CAS  Google Scholar 

  39. Holbach M, Zheng XL, Burd C, Jones CW, Weck M (2006) J Org Chem 71:2903

    Article  CAS  Google Scholar 

  40. Yang GC, Chen ZX, Xu GY, Nie XY (2004) Catal Commun 5:75

    Article  CAS  Google Scholar 

  41. Dioos BML, Geurts WA, Jacobs PA (2004) Catal Lett 97:125

    Article  CAS  Google Scholar 

  42. Dioos BML, Jacobs PA (2005) Appl Catal A 282:181

    Article  CAS  Google Scholar 

  43. Madhavan N, Jones CW, Weck M (2008) Acc Chem Res 41:1153

    Article  CAS  Google Scholar 

  44. Zheng XL, Jones CW, Weck M (2007) J Am Chem Soc 129:1105

    Article  CAS  Google Scholar 

  45. Annis DA, Jacobsen EN (1999) J Am Chem Soc 121:4147

    Article  CAS  Google Scholar 

  46. Breinbauer R, Jacobsen EN (2000) Angew Chem Int Ed 39:3604

    Article  CAS  Google Scholar 

  47. Ready JM, Jacobsen EN (2001) J Am Chem Soc 123:2687

    Article  CAS  Google Scholar 

  48. Ready JM, Jacobsen EN (2002) Angew Chem Int Ed 41:1374

    Article  CAS  Google Scholar 

  49. Choi SD, Kim GJ (2004) Catal Lett 92:35

    Article  CAS  Google Scholar 

  50. Kawthekar RB, Ahn CH, Kim GJ (2007) Catal Lett 115:62

    Article  CAS  Google Scholar 

  51. Kawthekar RB, Kim GJ (2008) Helv Chim Acta 91:317

    Article  CAS  Google Scholar 

  52. Kim GJ, Kwon YK, Park DW (2002) Abstr Pap Am Chem Soc 223:D3

    Google Scholar 

  53. Kim GJ, Lee H, Kim SJ (2003) Tetrahedron Lett 44:5005

    Article  CAS  Google Scholar 

  54. Kim GJ, Park DW (2000) Catal Today 63:537

    Article  CAS  Google Scholar 

  55. Kim GJ, Shin JH (1999) Catal Lett 63:83

    Article  CAS  Google Scholar 

  56. Thakur SS, Li WJ, Shin CK, Kim GJ (2005) Catal Lett 104:151

    Article  CAS  Google Scholar 

  57. Thakur SS, Li WJ, Shin CK, Kim GJ (2006) Chirality 18:37

    Article  CAS  Google Scholar 

  58. Yang HQ, Zhang L, Su WG, Yang QH, Li C (2007) J Catal 248:204

    Article  CAS  Google Scholar 

  59. Yang HQ, Zhang L, Zhong L, Yang QH, Li C (2007) Angew Chem Int Ed 46:6861

    Article  CAS  Google Scholar 

  60. Macquarrie DJ, Jackson DB (1997) Chem Commun 1:781

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank DOE-BES through Catalysis Science contract DE-FG02-03ER15459 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher W. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gill, C.S., Long, W. & Jones, C.W. Magnetic Nanoparticle Polymer Brush Catalysts: Alternative Hybrid Organic/Inorganic Structures to Obtain High, Local Catalyst Loadings for Use in Organic Transformations. Catal Lett 131, 425–431 (2009). https://doi.org/10.1007/s10562-009-0099-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0099-4

Keywords

Navigation